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Abstract

When applied to linear vector sequences, extrapolation methods are equivalent
to Krylov subspace methods. Both types of methods can be expressed as partic-
ular cases of the multisecant equations, the secant method generalized to higher
dimensions. Through these equations, there is also equivalence with a variety
of quasi-Newton methods. This paper presents a framework to connect these
various methods.
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1. Introduction

The equivalence between extrapolation methods and Krylov subspace meth-
ods is well-studied [1, 2, 3, 4, 5]. These works have largely focused on individual
extrapolation methods and the orthogonalization processes involved in each.
Equivalence between Krylov subspace methods and quasi-Newton methods, in-
cluding the multisecant equations, is less studied but still known [6]. Gragg and
Stewart describe using a QR factorization to solve the multisecant equations
[7]; If the function evaluations form a Krylov subspace this would be exactly
GMRES [8].

Sidi [9] has developed a framework for extrapolation methods, while Fang
and Saad [10] have developed one for quasi-Newton methods, but neither in-
cludes consideration of the other type of methods, nor Krylov subspace methods.
While the framework presented here does not include every method considered
in both of these previous frameworks, it shows all three types of methods connect
fundamentally.

To show these connections in the simplest way possible, we begin by con-
sidering the multisecant equations in various forms. From these various forms
we build quasi-Newton methods, extrapolation methods, and Krylov subspace
methods.
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Figure 1: Example of the secant method. Two points (x1, f(x1)) and (x2, f(x2)) are used to
draw a line. The zero of this line is then used as the next estimate of the root of f(x).

2. Multisecant equations

The multisecant equations are a generalization of the secant method into
higher dimensions. Recall that the secant method seeks the root of the function
f(x) by computing an approximation of the derivative f ′(xn):

x̂ = xn+1 − (xn+1 − xn) (f(xn+1)− f(xn))
−1

f(xn+1),

where x̂ approximates the root.
In higher dimensions it is necessary to �nd an approximation to the Jacobian

J(xn). To do so, one can expand f(xn+i), the function evaluated at a given point
xn+i, into a Taylor series about some other point xn:

f(xn+i) = f(xn) + J(xn)(xn+i − xn) +
1

2
(xn+i − xn)

⊤H(xn)(xn+i − xn) + . . .

As a �rst order approximation we can take the �rst two terms of this series,
resulting in the following approximate equation [11]:

f(xn+i)− f(xn) ≈ J(xn)(xn+i − xn).

This system can be solved for J(xn), though such a system would be underde-
termined. However, if one had as many f(xn+i) as there are dimensions in the
space,d, then one could solve[

f(xn+1) . . . f(xn+d)
]
− f(xn)1

⊤ = Ĵ
([
xn+1 . . . xn+d

]
− xn1

⊤) , (1)

where Ĵ approximates J(xn). This system is nonsingular given su�cient con-
ditions on the choice of the xn+i.

Now that an approximation Ĵ has been found for the Jacobian, an approxi-
mate root may be calculated:

x̂ = xn − Ĵ−1f(xn). (2)

This system is referred to as the multisecant equations. The equations can
be further generalized by allowing Ĵ to be the solution of an underdetermined
system, such as by using fewer than d function evaluations and multiplying both
sides of equation (1) by a matrix B⊤.
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The multisecant equations are but one instance of several equivalent meth-
ods. We begin with a speci�c form and prove the general form. Let k ≤ d,

Fn,k =
[
f(xn) . . . f(xn+k)

]
,

Xn,k =
[
xn . . . xn+k

]
,

∆n =


−1 . . . −1
1

. . .

1

 ,

then equation (1) may be rewritten as

Ĵ−1Fn,k∆n = Xn,k∆n. (3)

Recall from equation (2) that we require the vector Ĵ−1f(xn) to compute our
approximation x̂ to the root x. If there exists a vector ũ such that Fn,k∆nũ =

f(xn) then Ĵ−1f(xn) = Xn,k∆nũ. Thus, the multisecant equations can be
represented in the following compact form:

Fn,k∆nũ = f(xn), x̂ = xn −Xn,k∆nũ. (4)

If there are fewer function evaluations than the dimension of the space, k < d,
the equation to solve Ĵ is underdetermined and the �rst system of equation (4)
is overdetermined. There are two options to then solve this system: either to
pad out the matrix Fn,k with additional vectors, or add constraints. We will
focus on the latter, but will discuss the former in Section 3. Adding constraints
results in the underdetermined Newtonian form of the multisecant equations:

B⊤Fn,k∆nũ = B⊤f(xn), x̂ = xn −Xn,k∆nũ. (5)

If the range of Fn,k does not overlap with the kernel of B⊤, then there is a
unique solution to these equations.

One can replace ∆nũ with û for the right of equation (5), so that x̂ =
xn −Xn,kû. We then need a system for which û is a solution. Note �rst that
ũ ∈ Rk while û ∈ Rk+1, and so we require an additional constraint on û not
found in the system for ũ. Since the columns of ∆n sum to zero this constraint
is 1⊤û = 0. The remaining k constraints come from replacing ∆nũ in the left
of equation (5), resulting in[

1⊤

B⊤Fn,k

]
û =

[
0

B⊤f(xn)

]
, x̂ = xn −Xn,kû. (6)

We must now prove there is a bijection between ũ and û.

Proposition 1. For all û ∈ Rk there exists a unique ũ ∈ Rk+1 such that

û = ∆ũ where 1⊤û = 0, the columns of ∆ sum to zero, and its �rst k rows

form an invertible matrix.
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Proof. Using the constraint 1⊤û = 0 one can write ûk+1 = −1⊤Rkû, where Rk

is the restriction operator that takes the �rst k elements of a vector of length
k + 1. Then ũ can be found by solving the system Rk∆ũ = Rkû. The matrix
Rk∆ is square and invertible, meaning Rkû uniquely determines ũ. Since Rkû
also uniquely determines ûk+1, there exists exactly one ũ for any given û.

Note that Proposition 1 applies for any matrix ∆ ∈ R(k+1)×k satisfying the
stated conditions, and not merely∆n. This allows us to apply the result broadly.

Since xn is the �rst column of Xn,k, the equation for x̂ in (6) can be written
as

x̂ = xn −Xn,kû = Xn,k (e1 − û) =: Xn,ku.

We can then �nd a system for the vector u = e1 − û by multiplying u by the
matrix found in equation (6). The products of this matrix with the vectors e1
and û are known:[

1⊤

B⊤Fn,k

]
u =

[
1⊤

B⊤Fn,k

]
(e1 − û)

=

[
1

B⊤f(xn)

]
−

[
0

B⊤f(xn)

]
=

[
1
0

]
.

This leaves us with the base form of the multisecant equations [12]:[
1⊤

B⊤Fn,k

]
u =

[
1
0

]
, x̂ = Xn,ku. (7)

From this base form one can transform into several equivalent forms. One
interesting example is to use the transform u = ei+1 − û, giving[

1⊤

B⊤Fn,k

]
û =

[
0

B⊤f(xn+i)

]
, x̂ = xn+i −Xn,kû.

This indicates that our solution x̂ is also the solution found from equation (2)
replacing n with n+ i and keeping Ĵ �xed:

x̂ = xn − Ĵ−1f(xn) = xn+i − Ĵ−1f(xn+i).

One can then replace û with ∆ũ for any ∆ ∈ R(k+1)×k such that its columns
sum to zero:

Fn,k∆ũ = f(xn+i), x̂ = xn+i −Xn,k∆ũ.

Our original ∆n gives a centered �nite di�erence stencil, but one can also use a
path-based stencil:

∆s =


−1

1
. . .

. . . −1
1

 .
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This means the system from equation (1) produces an identical approximation
to the Jacobian as the system[

f(xn+1)− f(xn) f(xn+2)− f(xn+1) . . . f(xn+k)− f(xn+k−1)
]
=

Ĵ
([
xn+1 − xn xn+2 − xn+1 . . . xn+k − xn+k−1

])
.

Ultimately, all �nite di�erence formulas that use the same function evaluations
give the same Ĵ . Thus, Ĵ approximates J(x) for all x ∈ conv(xn, . . . ,xn+k),
the convex hull of the vectors of this part of the sequence.

Since all three forms are equivalent for all choices of i and valid ∆ and
the multisecant equations represent a speci�c choice of i and ∆, all three forms
provide the same approximation to the root of f(x) as the multisecant equations.
Wherever the multisecant equations are used one may replace them with any of
the forms presented here.

The multisecant equations are an example of a quasi-Newton method. A
quasi-Newton method is any method of the form

x̂n+1 = xn − un, (8)

where un is an approximate solution to the equation

J(xn)u = f(xn), (9)

where J(x) is the Jacobian of f(x) evaluated at xn. In particular, one can use the
multisecant equations in any of their forms to provide such an approximation,
namely equations (4), (5), (6), and (7).

Consider, for example, equation (4) with k = d. The solution ũ may be
written elementwise using Cramer's rule:

ũi =

∣∣. . . f(xn+i−1)− f(xn) f(xn) f(xn+i+1)− f(xn) . . .
∣∣∣∣f(xn+1)− f(xn) . . . f(xn+d)− f(xn)

∣∣
=(−1)i

∣∣f(xn) . . . f(xn+i−1) f(xn+i+1) f(xn+d)
∣∣∣∣∣∣ 1 . . . 1

f(xn) . . . f(xn+d)

∣∣∣∣ .

Cramer's rule is not a practical method for �nding these solutions [13, Sec. 3.1].
It is used here solely for the purposes of extracting these forms of the solutions.
The quasi-Newton method de�ned above may then be expressed as

x̂n+1 =xn −

∣∣∣∣ 0 xn+1 − xn . . . xn+d − xn

f(xn) f(xn+1) . . . f(xn+d)

∣∣∣∣∣∣∣∣ 1 . . . 1
f(xn) . . . f(xn+d)

∣∣∣∣
=

∣∣∣∣ xn . . . xn+d

f(xn) . . . f(xn+d)

∣∣∣∣∣∣∣∣ 1 . . . 1
f(xn) . . . f(xn+d)

∣∣∣∣ ,
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where one must expand the non-square determinant along the top row, so that

x̂n+1 · ei =

∣∣∣∣xn · ei . . . xn+d · ei
f(xn) . . . f(xn+d)

∣∣∣∣∣∣∣∣ 1 . . . 1
f(xn) . . . f(xn+d)

∣∣∣∣ . (10)

This is a generalized notion of the determinant used in the theory of extrapola-
tion methods [14].

Suppose that we do not have enough values of f(xn+i) to fully determine
Ĵ , ie. k < d. We apply the solution found above to the underdetermined
Newtonian form of the equations, equation (5). The quasi-Newton method that
results from this may be written as

x̂n+1 =

∣∣∣∣∣∣∣∣∣
xn . . . xn+k

v⊤
1 f(xn) . . . v⊤

1 f(xn+k)
...

...
v⊤
k f(xn) . . . v⊤

k f(xn+k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 . . . 1

v⊤
1 f(xn) . . . v⊤

1 f(xn+k)
...

...
v⊤
k f(xn) . . . v⊤

k f(xn+k)

∣∣∣∣∣∣∣∣∣

, (11)

where vi is the i�th column of B.

3. Connection to root-�nding methods

As mentioned in the previous section, as an alternative to adding constraints
to equation (1) one can add vectors to the matrix Fn,k. For example, in Broy-

den's method [15] Ĵ is constructed one vector at a time, and the update is
chosen such that

Ĵn+1

[
Xn,1∆ Q

]
=

[
Fn,1∆ ĴnQ

]
,

where Ĵn is the approximation to the Jacobian at the n�th iteration andQ⊤Xn,1∆ =

0. The columns of Q are additional search directions, and the product ĴnQ an
approximation to function evaluations in these search directions. In the general-
ized Broyden's method [16, 17] Xn,1 and Fn,1 are replaced by Xn,k and Fn,k and
Q reduced in size by k columns. Since the search directions in Q are arbitrary,
removing them will not a�ect the convergence.

Broyden's family of methods [17, 10] may be written as

Ĵn+1 = Ĵn + f(xn+1)v
⊤
n ,

where v⊤
n (xn+1 − xn) = 1. If vn is chosen such that

v⊤
nXn−k,k∆ =

[
0 . . . 0 1

]
,
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with possibly other constraints, then Ĵn+1Xn−k,k∆ = Fn−k,k∆, which is func-
tionally equivalent to equation (3).

Anderson mixing [18, 17, 6] solves Fn,k∆u = f(xn+k), see equation (4), in a
least-squares sense, then uses the step

x̂n+k+1 = xn+k −Xn,k∆u+ β (f(xn+k)− Fn,k∆u) .

For β = 0 this is the multisecant equations, changing ∆n and the index in xn.
As has been shown in Section 2, we are free to choose these features. Anderson
mixing is then the multisecant equations with relaxation.

4. Connection to extrapolation methods

Extrapolation methods seek to accelerate the convergence of sequences. In
general, these sequences are nonlinear and can lie within a vector space. If one
has k+1 iterates of the sequence, {xn, . . . ,xn+k}, then the next element in the
accelerated sequence is

x̂n+1 =

k∑
i=0

uixn+i = Xn,ku,

where 1⊤u = 1. Let x be the limit of the sequence xn. If x lies within the span
of the iterates then we seek u that satis�es

x̂n+1 = Xn,ku = x ⇐⇒
(
Xn,k − x1⊤)u =

k∑
i=0

ui (xn+i − x) = 0.

If Xn+1,ku = x as well, such as in the limit as n approaches in�nity or when
the columns of Xn+1,k and Xn,k span the same space, then

(Xn+1,k −Xn,k)u =

k∑
i=0

ui (xn+i+1 − xn+i) = 0.

The iterate x̂n+1 may again be expressed using determinants:

x̂n+1 =

∣∣∣∣∣∣∣∣∣
xn . . . xn+k

v⊤
1 r(xn) . . . v⊤

1 r(xn+k)
...

...
v⊤
k r(xn) . . . v⊤

k r(xn+k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 . . . 1

v⊤
1 r(xn) . . . v⊤

1 r(xn+k)
...

...
v⊤
k r(xn) . . . v⊤

k r(xn+k)

∣∣∣∣∣∣∣∣∣

,

using the same generalized notion of the determinant from equation (10), where

r(xn+i) = xn+i+1 − xn+i (12)
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and {vi} is a linearly independent set of vectors. See [14] for a complete intro-
duction of extrapolation methods. Note this is exactly equation (11) replacing
f(x) with r(x). Thus, extrapolation methods of this form are identical to the
multisecant equations acting on f(x) = r(x) using {xn+i} as search directions.
They can therefore be expressed in the form of equation (7).

Methods of this form are called polynomial extrapolation methods [9, 3].
Several extrapolation methods fall into this category:

� minimum polynomial extrapolation (MPE) [19], with vi = r(xn+i−1);

� modi�ed minimum polynomial extrapolation (MMPE) [9], with vi some
�xed vector;

� reduced rank extrapolation (RRE) [20, 21, 22], with vi = r(xn+i) −
r(xn+i−1).

There is another category of methods known as ϵ-algorithms [23, 24, 25, 3]
that may be connected to the multisecant equations as well, though not in the
same manner. Recall equation (1). One can take several such equations and
arrive at several approximations of the Jacobian, see equation (3):

Fn+j,k∆n = Ĵn+jXn+j,k∆n ∀ j.

As before in equation (4), we seek to solve

Fn+j,k∆ũj = f(xn+j), x̂n+1 = xn+j −Xn+j,k∆ũj ∀ j.

This gives several estimates of x̂n+1. Each of these systems can be reduced to
a single equation by taking the inner product with a given vector v. There
are then as many equations as there are values of j. If one assumes all ũj are
equal, essentially that each individual system captures the solution, then one
can summarize these equations in the system v⊤Fn,k

...
v⊤Fn+k−1,k

∆ũ =

 v⊤f(xn)
...

v⊤f(xn+k−1)

 , x̂n+1 = xn −Xn,k∆ũ.

Following the same work as in Section 2 one arrives at the solution

x̂n+1 =

∣∣∣∣∣∣∣∣∣
xn . . . xn+k

v⊤f(xn) . . . v⊤f(xn+k)
...

...
v⊤f(xn+k−1) . . . v⊤f(xn+2k−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 . . . 1

v⊤f(xn) . . . v⊤f(xn+k)
...

...
v⊤f(xn+k−1) . . . v⊤f(xn+2k−1)

∣∣∣∣∣∣∣∣∣

.

Replacing f(x) with r(x) from equation (12) gives the topological ϵ-algorithm
(TEA) [26].
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5. Connection to Krylov methods

Suppose the extrapolation methods of the previous section are applied to
the linear vector sequence xn+1 = (A+ I)xn − b. The limit x of this sequence
is the solution to Ax = b. The functions r(xn+i), see equation (12), are then

r(xn+i) =xn+i+1 − xn+i

=(A+ I)xn+i − b− xn+i

=Axn+i − b,

the residuals of the system Ax = b, and they satisfy

r(xn+i) =xn+i+1 − xn+i

=(A+ I)xn+i − b− ((A+ I)xn+i−1 − b)

=(A+ I)(xn+i − xn+i−1) = (A+ I)r(xn+i−1).

The vectors r(xn+i) then form a Krylov subspace, Kk(A+ I, r(xn)).
Under these conditions the extrapolation methods become Krylov subspace

methods. Most notably, since MPE uses the Arnoldi iteration to produce
orthogonal search directions, it is identical to GMRES when applied to this
linear sequence [6, 1, 3]. These algorithms are presented as Algorithms 1
and 2. The connections to the linear case are noted in the latter. Since

Algorithm 1 GMRES

q1 = b/ ∥b∥
for k = 1 to n do

y = Aqk (∈ Kk(A,b))
orthogonalize y with respect to Kk−1(A,b)
qk+1 = y/ ∥y∥

end for

minimize ∥Hnu− ∥b∥ e1∥
x̂n+1 = Qnu+ x0

Algorithm 2 MPE

q1 = r(xn+1)/ ∥r(xn+1)∥ (b/ ∥b∥ in the linear case)
for k = 1 to n do

y = r(xn+k) (∈ Kk(A+ I,b) in the linear case)
orthogonalize y with respect to {r(xn), . . . , r(xn+k−1)}
(Kk−1(A+ I,b) in the linear case)

qk+1 = y/ ∥y∥
end for

minimize ∥Hnu∥ such that 1⊤u = 1
x̂n+1 =

[
x0 . . . xn

]
u
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Extrapolation qk+1⊥ Krylov
MPE Kk(A+ I, f(xn)) GMRES
RRE Kk(A, f(xn)) GMRES
MMPE Kk(G,q0) n/a
TEA Kk(A

⊤,q) BiCG

Table 1: Connections between extrapolation methods and Krylov methods. The extrapolation
methods are applied to the sequence xn+1 = (A+ I)xn − b.

Kk(A+ I,v) = Kk(A,v) the search directions for both algorithms are identical.
The minimization steps of the two algorithms can be shown to be equivalent

as well. Consider the solution found using GMRES: x̂ = Qkyk where Qk is
derived from the Arnoldi iteration on Kk−1(A+ I,b). Then we seek

min ∥Ax̂− b∥ = min ∥AQkyk − b∥ = min ∥Fn,k∆ũk − b∥ ,

since the column space of Fn,k∆ is equal to the Krylov subspace Kk−1(A,b).
Recall in the linear case that f(xn) = b, and so this minimization is equivalent
to solving equation (5) with B = Fn,k. We've shown in Section 2 that this
is equivalent to minimizing ∥Fn,kuk∥ under the constraint 1⊤uk = 1. This is
exactly the minimization step in MPE.

For the linear case of TEA, the term v⊤f(xn+i) may now be written as
v⊤(A + I)i−jf(xn+j). This means TEA can now be expressed in the form of
equation (7) with vi = (A⊤+I)iv. TEA then uses the Lanczos biorthogonaliza-
tion process, making it equivalent in the linear case to the biconjugate gradient
method (BiCG).

Table 1 gives the orthogonalization conditions and corresponding Krylov
subspace methods for these four extrapolation methods when they are applied
to linear vector sequences. MMPE does not have a Krylov equivalent since the
vectors vi are not speci�ed in the method.

6. Connections to other methods

The multisecant equations form the basis of many other methods besides
those mentioned here. In particular, Jacobian-free Newton-Krylov methods re-
solve a Newton step, equation (2) or its exact version, using a Krylov subspace
method. See [27] for an introduction and survey of such methods. As these
methods eschew the construction of the Jacobian by using �nite di�erence ap-
proximations they fall precisely into this framework, suggesting they solve the
multisecant equations.

Related to this are nonlinear Krylov methods, see for example [28, 29]. These
are similar to the above framework and Newton-Krylov methods but may di�er
by the use of preconditioning on the nonlinear function.

This framework can be considered to cover all methods that share the fol-
lowing aspects:

� linearization of a nonlinear function;
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Figure 2: Numerical examples comparing the multisecant equations (MPE in its base form,
see equation (7)), MPE and GMRES. Left: A linear example, see equation (13). Right: A
nonlinear example, see equation (14).

� approximation of a Newton step, generally by �nite di�erence;

� solution of the inexact Newton step with a Krylov subspace method, and;

� restart with an updated set of function evaluations, at least as often as
the Krylov subspace method �nds a complete vector space.

7. Numerical examples

We apply MPE, GMRES and the multisecant equations to numerical vector
sequences to compare their behaviour. We �rst consider a linear example:

xn+1 = Axn + b, A ∈ R20×20, (13)

where A and b are determined randomly. The norms of A and b are set to 0.5
so that the sequence xn has a limit as opposed to an anti-limit.

The left of Figure 2 shows how each method tackles the residual of the
sequence. The GMRES algorithm used is the built-in MATLAB version, while
the MPE algorithm makes use of Householder re�ections and Givens rotations
and the multisecant equations use the backslash operator in MATLAB to solve
equation (7). We see all three methods produce identical residuals for the �rst
7 iterations. After this, round-o� error in the calculations prevents further
improvements in accuracy for the base form of MPE given by the multisecant
equations, (7). GMRES stops iterating once the residual is below machine
epsilon.

We next consider a nonlinear example, also in R20:

xn+1 = sin(Ax2
n), (14)
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]
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[
1
0

]
MPE

GMRES[
1⊤ 1⊤

Fn,k B

]
u =

[
1
0

]
,[

Xn,k C
]
u = x̂

RRE

MMPE

BiCG

Generalized Broyden TEA*

k < d

k < d

(C∆)⊤(Xn,k∆) = 0,

B = Ĵn−1,kC

B = Fn,k−1

B = Fn,k∆

B =
[
q1 . . . qk

]
B =

[
q A⊤q . . .

]

+relaxation

Figure 3: Interconnectivity of extrapolation, acceleration and quasi-Newton methods. Red
arrows indicate f(xn) = xn+1−xn while blue arrows indicate f(xn) = Axn−b and f(xn+1) =
(A+I)f(xn). Note that TEA* is the linear version of the method; general TEA derives directly
from the multisecant equations.

where the square operation is performed elementwise and A is determined ran-
domly. Convergence of the sequence is fast. The right of Figure 2 shows the
residual under the multisecant equations and MPE. GMRES cannot be used
here as the problem is nonlinear. Again, MPE and the multisecant equations
agree, up to numerical error.

8. Conclusions

Figure 3 presents a summary of the interconnectivity discussed in this paper.
The multisecant equations form the basis of numerical methods for root-�nding
in higher dimensions, in particular generalized Broyden's method, see the left
of Figure 3. They themselves are extensions of the secant method in 1D.

When underdetermined they can be connected to extrapolation methods, see
the blue arrows on right of Figure 3. Which particular extrapolation method
depends on the additional constraints imposed on the underdetermined systems.

If these methods are applied to linear problems with vector sequences that
lie within Krylov subspaces, then they become Krylov subspace methods, see
the red arrows on right of Figure 3. This is due to the orthogonalization steps
in these methods.

12



The three methods are then intrinsically linked. As a direct consequence,
extrapolation methods can be thought of as nonlinear Krylov subspace meth-
ods, as they use the same orthogonalization processes but applied to nonlin-
ear problems. Moreover, this indicates the advanced techniques employed in
Krylov subspace methods can be used to improve extrapolation methods. It
also suggests that any Krylov subspace method has an extrapolation method
counterpart, and vice versa.
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