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Abstract

Pseudospectral differentiation matrices suffer from large round-off error, and give rise to ill-
conditioned systems used to solve differential equations numerically. This thesis presents two
types of matrices designed to precondition these systems and improve robustness towards
this round-off error for spectral methods on Chebyshev-Gauss-Lobatto points. The first
of these is a generalization of a pseudospectral integration matrix described by Wang et
al. [18]. The second uses this integration matrix to construct the matrix representing the
inverse operator of the differential equation. Comparison is made between expected and
calculated eigenvalues. Both preconditioners are tested on several examples. In many cases,
accuracy is improved over the standard methodology by several orders of magnitude. Using
these matrices on general sets of points is briefly discussed.

Keywords: pseudospectral methods, preconditioning, Birkhoff interpolation, variation of
parameters, Chebyshev spectral methods
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Chapter 1

Introduction

Differentiation matrices are known to suffer from large round-off error, especially for high
orders and fine discretization [4]. They give rise to ill-conditioned systems for solving dif-
ferential equations numerically. It is the aim of this thesis to provide a methodology for
reducing this round-off error, and in turn the condition number of these systems.

The focus of this thesis is on Chebyshev collocation methods. However, much of the
theory is readily extendable to other spectral methods.

1.1 The Chebyshev collocation system

We begin by defining the basics of Chebyshev collocation. This method is used to consider
differential equations defined on the interval [-1,1]. To approximate the equation discretely,
a partition is used to consider the equations on a finite number of points. This partition,
defined here as X, is known as the Chebyshev nodes, Chebyshev points of the second kind,
or Chebyshev-Gauss-Lobatto (CGL) points:

X =
{
xk = cos

(
kπ

N

)}N
k=0

, 1 = x0 > x1 > · · · > xN = −1. (1.1)

Let the vector ~U represent the function u(x) evaluated at the CGL points. Then the
vector representing the derivative of u(x) can be found by multiplying ~U by the Chebyshev
differentiation matrix D, defined element-wise by [13]:

D00 = 2N2 + 1
6

Dkk = − xk
2(1− x2

k)
, k 6= 0, N

Djk = cj
ck

(−1)j+k

xj − xk
, k 6= j

DNN = −D00,

(1.2)

1



where

ck =

2 if k = 0, N

1 otherwise.
(1.3)

Higher order differentiation matrices can be found by multiplying D together: D(m) = Dm.
To reduce round-off error in calculations, one can use the "negative sum trick" [5]:

Dkk = −
∑
j 6=k

Dkj . (1.4)

Chebyshev collocation implicitly decomposes functions into linear combinations of the
Chebyshev polynomials, defined recursively by [13]:

T0(x) = 1, T1(x) = x, Tk(x) = 2xTk−1(x)− Tk−2(x), (1.5)

or in closed form by:
Tk(x) = cos(k arccos(x)). (1.6)

The N–th order Chebyshev polynomial has extrema at the CGL points (1.1) [13].
Consider the general m–th order linear differential operator:

Lu(x) = u(m)(x) +
m∑
n=1

qn(x)u(m−n)(x). (1.7)

Consider also m boundary conditions:

m∑
n=1

aknu
(m−n)(1) = Bku(1) = ak0, k = 1, ..., k0,

m∑
n=1

aknu
(m−n)(−1) = Bku(−1) = ak0, k = k0 + 1, ...,m.

(1.8)

The ordinary differential equation to solve is then:Lu(x) = f(x)

{Bku(±1) = ak0}mk=1

(1.9)

where f(x) is a continuous function.
Let the matrix Ā represent the Chebyshev collocation matrix for this operator:

Ā = D(m) +
m∑
n=1

QnD
(m−n), Qn =


qn(x0)

. . .
qn(xN )

 . (1.10)
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The rows for the boundary conditions can be represented in Chebyshev collocation by taking
linear combinations of the first and last rows of the various differentiation matrices. Let Â
be the matrix formed by the resulting rows, such that the k–th condition is Âk, the k–th
row of Â:

Â =



∑m
n=1 a

1
nD

(m−n)
0

...∑m
n=1 a

k0
n D

(m−n)
0∑m

n=1 a
k0+1
n D

(m−n)
N

...∑m
n=1 a

m
n D

(m−n)
N


(1.11)

where D(j)
0 is the first row of the j–th order differentiation matrix, and D(j)

N the last row of
the same matrix.

The Chebyshev collocation system for this equation is:

[
Ā

Â

]
~U =


~f

a1
0
...
am0

 (1.12)

where the elements of ~f are the values {f(xi)}.
The matrix Ā is singular: if the vector ~P represents any homogeneous solution to the

operator L evaluated at the CGL points, then Ā ~P = 0. Given that an m–th order linear
operator has m linearly independent homogeneous solutions, the null space of Ā has dimen-
sion m. As such, m rows from Ā can be removed and the remaining matrix will have the
same rank.

Each row in Ā is associated with a CGL point. Specifically, the i–th row of Ā enforces
the linear operator at the point xi ∈ X. To avoid any counting errors, the rows of Ā are
labelled from 0 to N . In this way, the first row, labelled Ā0, is associated with the point
x0 = 1 and the last row, labelled ĀN , with the point xN = −1. Therefore, choosing rows to
remove from Ā is equivalent to choosing m points out of the CGL points X.

The choice of row removal is arbitrary, and provides an additional parameter to adjust.
To proceed with the construction, let m rows be removed by choosing m CGL points. Let
these m points form the set V = {vk}mk=1 such that vk = xj ∈ X for each k for some
j ∈ {0, ..., N}. Then the j–th row of Ā will be replaced by the k–th row of Â.

Let the matrix A represent the square Chebyshev collocation matrix for this equation,
defined by its rows:

Ai =

Āi xi /∈ V

Âk xi = vk ∈ V
. (1.13)

3



The right-hand side for this system is defined element-wise as:

Fi =

f(xi) xi /∈ V

ak0 xi = vk ∈ V
. (1.14)

The system to solve is then:
A~U = ~F . (1.15)

Note that it is not necessary to remove rows to make room for boundary conditions.
Rows can be added to A, creating an overdetermined system, and the system solved by
least squares. However, for matrices A with round-off error, the boundary conditions will
no longer be satisfied exactly.

1.2 Construction of collocation system for a two-point bound-
ary value problem

Consider a general two-point boundary value problem on the closed interval [−1, 1] with
Robin boundary conditions:

u′′(x) +p(x)u′(x) + q(x)u(x) = f(x), au′(1) + bu(1) = c, du′(−1) + gu(−1) = h. (1.16)

The problem will be considered on N + 1 CGL points (1.1).
The first step in constructing the matrix A for this problem is to construct the matrix

Ā from equation (1.10). To do this, two diagonal matrices are needed:

P =


p(x0)

. . .
p(xN )

 , Q =


q(x0)

. . .
q(xN )

 . (1.17)

This allows Ā to be expressed as:

Ā = D(2) + PD +Q (1.18)

where D is the Chebyshev differentiation matrix (1.2) and D(2) is the square of D.
Next, two rows must be created, each corresponding to one of the boundary conditions.

These rows will form the matrix Â from equation (1.11):

Â =
[
aD0 + bI0

dDN + gIN

]
, (1.19)

where D0 and I0 are the first rows of the differentiation and identity matrices, respectively,
and DN and IN the last rows.

4



The matrix A can now be formed in full once a specific choice of V is made. In this
example, V = {−1, 1} will be used. The matrix A is then:

A =



Â1

Ā1
...

ĀN−1

Â2


(1.20)

where Âk is the k–th row of Â and Āj is the row of Ā corresponding to the j–th CGL point.
The right hand side of the system is straightforward to construct. Since the first and

last rows of A correspond to boundary conditions, so must the first and last entries of ~F ,
the right hand side vector. Every other entry matches the corresponding value of f(xj):

~F =



c

f(x1)
...

f(xN−1)
h


. (1.21)

This gives the system presented in equation (1.15).
The matrix A is set up such that the boundary conditions directly replace the rows

removed. Note that this is not strictly necessary. The boundary conditions can be added in
any order to A after row removal. However, maintaining the order and position of the rows
of Ā will prove useful in constructing the integration matrix in Chapter 2.
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Chapter 2

Integration matrices

Let D̃(m) be the collocation matrix constructed as described in the previous chapter for the
linear operator:

Lu(x) = u(m)(x) (2.1)

with general boundary conditions. Given this system, the inverse of D̃(m) acts as the m–th
order integration matrix, with boundary conditions.

Calculating this inverse numerically is subject to round-off error and poor conditioning.
Instead, we construct a matrix B that is the inverse of D̃(m) in theory. Specifically, B is
constructed to be the m–th order integration matrix with appropriate boundary conditions.
Due to round-off error, B will not be the exact inverse, but will approximate it.

2.1 Construction of the integration matrix

To construct B, recognize that each of its columns can be represented by an N–th degree
polynomial. Conditions on such polynomials can then be found such that B is the inverse
to D̃(m). The following lemma and proof have been adapted from Wang et al. [18]

Lemma 1. Let D̃(m) be constructed as in Chapter 1 for m–th order differentiation with m
boundary conditions. Let B be a matrix defined element-wise as:

Bij = Bj(xi) (2.2)

where Bj(x) is a polynomial of degree N and xi is the i–th CGL point (1.1). Then D̃(m)B = I

if and only if Bj(x) satisfy:

B
(m)
j (xi) =

δij xj /∈ V

0 xj ∈ V
, δij =

1 i = j

0 i 6= j
, xi /∈ V

BkBj(±1) =

0 xj 6= vk ∈ V

1 xj = vk ∈ V
.

(2.3)

6



Proof. The matrix D̃(m) acts exactly on N–th degree polynomials. The j–th column of the
product D̃(m)B is therefore the linear operator that D̃(m) represents acted on Bj(x). Recall
from Chapter 1 that the i–th row of D̃(m) performs m–th order differentiation at the point
xi ∈ X for xi /∈ V , and the k–th boundary condition for xi = vk ∈ V . In this way, the
matrix product D̃(m)B can be represented element-wise by:

(D̃(m)B)ij =

B
(m)
j (xi) xi /∈ V

BkBj(±1) xi = vk ∈ V
(2.4)

Therefore, D̃(m)B = I is equivalent to the conditions in equation (2.3).

Finding each Bj(x) is a Birkhoff interpolation problem [6, 16], where the value of the
derivative of a polynomial is specified. To be precise, the m–th order derivative of Bj(x) is
specified on X \V , the CGL points without the set V . Additionally, equation (2.3) gives m
boundary conditions for each Bj(x).

Consider the space of polynomials of degree at most N . Let the inner product < f, g >c

be defined on this space as

< f, g >c=
N∑
i=0

1
ci
f(xi)g(xi) (2.5)

where ci are the Chebyshev weights (1.3) and {xi} = X the CGL points (1.1). The Cheby-
shev polynomials (1.5) satisfy a discrete orthogonality relation [15]:

< Tj , Tk >c=
cj
2 Nδj,k. (2.6)

The polynomials {Bj(x)} can be represented by a linear combination of the Chebyshev
polynomials up to and including degree N . Therefore, their m–th derivatives can be written
as:

B
(m)
j (x) =

N∑
k=0

bkjTk(x) =
N−m∑
k=0

bkjTk(x), (2.7)

noting that bkj = 0 for k = N − m + 1, ..., N . Using the conditions in (2.3) and the
orthogonality relation in (2.6) gives the equations for the set of bkj :

< B
(m)
j , Tk >c= bkj

ck
2 N. (2.8)

Let βkj = B
(m)
j (vk)/cn where vk = xn ∈ V . Since the m–th derivative of Bj(x) is not

specified for points within V , the value of βkj is not known. The value of bkj is then:

bkj = 2
ckN

< B
(m)
j , Tk >c=

2
ckN

(
1
cj
Tk(xj) +

m∑
n=1

βnjTk(vn)
)
. (2.9)
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Recall that bkj = 0 for k = N −m + 1, ...N . Thus, there is a system of equations with
which to find the values {βkj}:

TN (v1) . . . TN (vm)
... . . . ...

TN−m+1(v1) . . . TN−m+1(vm)



β1j
...

βmj

 = − 1
cj


TN (xj)

...
TN−m+1(xj)

 . (2.10)

The matrix is the same for all N + 1 systems that need to be solved. Using the LU decom-
position of the matrix reduces the operation count significantly.

This provides the coefficients for the m–th derivative of Bj(x). The function Bj(x) can
then be found by integration. The first order integrals of the Chebyshev polynomials are
defined recursively [13]:

∂−1
x T0(x) = T1(x),

∂−1
x T1(x) = T2(x)/4,

∂−1
x Tk(x) = 1

2

(
Tk+1(x)
k + 1 − Tk−1(x)

k − 1

)
.

(2.11)

The m–th order integrals can be computed iteratively using this form:

∂−nx Tk(x) = ∂−1
x (∂−n+1

x Tk(x)) = 1
2

(
∂−n+1
x Tk+1(x)

k + 1 − ∂−n+1
x Tk−1(x)

k − 1

)
. (2.12)

Since the function Bj(x) is arrived at through integration, there is a polynomial of degree
m− 1 to be added to the integrals of the Chebyshev polynomials:

Bj(x) =
N−m∑
k=0

bkj
(
∂−mx Tk(x)− pk(x)

)
(2.13)

where pk(x) are degrees of freedom arising from integration. After m integrations, these
degrees of freedom form a "free polynomial" of degree m−1. The remaining conditions from
equation (2.3) must be satisfied using these polynomials. For xj /∈ V , it is straightforward
to show:

Bnpk(±1) = Bn∂−mx Tk(±1). (2.14)

This implies pk(x) are identical for all xj /∈ V .
The polynomials pk(x) are decomposed into Chebyshev polynomials:

pk(x) =
m−1∑
i=0

rikTi(x). (2.15)
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The values of the Chebyshev polynomials and their derivatives at the boundaries can be
calculated from the identity [15]:

T
(m)
k (±1) = (±1)k+m

m−1∏
j=0

k2 − j2

2j + 1 . (2.16)

With these values the following matrices and vectors can be formed:

Cm(±1) =


T0(±1) . . . Tm−1(±1)

... . . . ...
T

(m−1)
0 (±1) . . . T

(m−1)
m−1 (±1)

 ,

~∂T k(±1) =


∂−mx Tk(±1)

...
∂−1
x Tk(±1)

 .
(2.17)

In addition, define the matrices B(±1):

B(1) =


a1
m . . . a1

1
... . . . ...
ak0
m . . . ak0

1

 , B(−1) =


ak0+1
m . . . ak0+1

1
... . . . ...
amm . . . am1

 (2.18)

where akn come from the boundary conditions, and are defined in Chapter 1.
If the coefficients {rik}i are represented by the vector ~rk, then they can be found using

the system: [
B(1)Cm(1)
B(−1)Cm(−1)

]
~rk =

[
B(1) ~∂T k(1)
B(−1) ~∂T k(−1)

]
. (2.19)

Like the system to find the values {βkj}, this system should be factorized once to reduce
the operation count. This provides all required information for the functions {Bj(x)}xj /∈V .

For xj ∈ V , Bj(x) is a polynomial of degree at most m − 1, satisfying the boundary
conditions:

BkBj(±1) =

0 xj 6= vk

1 xj = vk
. (2.20)

Like the free polynomials pk(x), these functions can be decomposed into linear combinations
of Chebyshev polynomials:

Bj(x) =
m−1∑
i=0

r̂kiTi(x), xj = vk ∈ V. (2.21)
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These coefficients can be found with the system:

[
B(1)Cm(1)
B(−1)Cm(−1)

]
r̂1,0 . . . r̂m,0
... . . . ...

r̂1,m−1 . . . r̂m,m−1

 = I. (2.22)

Therefore, the coefficients r̂ki form the inverse of the block matrix used to find the free
polynomials pk(x). Given this, the coefficients rik can be found by:

~rk =


r̂1,0 . . . r̂m,0
... . . . ...

r̂1,m−1 . . . r̂m,m−1


[
B(1) ~∂T k(1)
B(−1) ~∂T k(−1)

]
. (2.23)

2.2 Application of the integration matrix

As stated in the introduction to this chapter, the matrix B is an approximation to the
inverse of the matrix D̃(m). The matrix D̃(m) is constructed for the simple linear operator
consisting of one derivative of order m.

Consider instead the general linear operator from equation (1.7). Let A be the matrix
constructed as in Chapter 1. This matrix can be divided into two pieces:

A = Ahead +Atail (2.24)

where Ahead is equal to the matrix D̃(m). Specifically, Ahead represents the highest order
differentiation and boundary conditions, while Atail contains all lower order differentiation
matrices.

Recall that the system to solve is:

A~U = D̃(m)~U +Atail ~U = ~F . (2.25)

This gives rise to two equivalent but numerically distinct systems:

(i) (I +BAtail)~U = B ~F

(ii) (I +AtailB)~Umodal = ~F , ~U = B~Umodal.
(2.26)

Method (i) is a straightforward preconditioning of the matrix A. The largest source of
round-off error, D̃(m), has been essentially removed from the system. Method (ii) is a modal
approach from Wang et al. [18] This is used primarily when A is rectangular and B is a
right inverse.
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The matrix B proves to be an effective preconditioner for a variety of problems. Results
in Chapter 6 and McCoid and Trummer [14] show it to be a marked improvement on other
methods.

In comparison to the inverse operator matrices that follow, the preconditioner B is
significantly easier to calculate. It requires fewer systems to be solved and does not need
information about the fundamental solution set.

As seen in McCoid and Trummer [14] and several examples in Chapter 6 the system
solved to find U has its condition number greatly reduced when using the preconditioner.
The preconditioner may ensure solving this system is not a major source of round-off error.
When this is the case, there may prove little advantage to using the inverse operators of
the subsequent chapter, which remove the need to solve this system.
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Chapter 3

Inverse operators

Having found the inverses of differentiation matrices with boundary conditions, we now seek
the inverses of more general differential operators. Consider the linear differential operator
L:

Lu(x) = u(m)(x) +
m∑
n=1

qn(x)u(m−n)(x) (3.1)

with a fundamental set of solutions to the homogeneous equation Lu(x) = 0 represented by
{Pk(x)}mk=1. Let the matrix A be constructed as described in Chapter 1.

The round-off error in the matrix D(m) increases with N and m. This causes the system
to be poorly conditioned, and troublesome to solve. Rather than solve the system directly,
we look for a matrix R that acts as a right inverse to A:

AR ≈ I. (3.2)

3.1 Construction of the inverse operator

Let the j–th column of R be an N–th degree polynomial Rj(x) evaluated at the Chebyshev
points, such that R can be defined element-wise as:

Rij = Rj(xi). (3.3)

Lemma 2. Let A be constructed as in Chapter 1 for the linear differential operator L and
m boundary conditions {Bk}. Then AR = I if and only if Rj(x) satisfy:

LRj(xi) =

δij xj /∈ V

0 xj ∈ V
, xi /∈ V (3.4)

BkRj(±1) =

0 xj 6= vk ∈ V

1 xj = vk ∈ V
. (3.5)
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Proof. The proof is identical to that for lemma 1, withm–th order differentiation exchanged
for the more general operator L.

Recall that the functions {Pk(x)} are homogeneous solutions for the operator L. We use
the following ansatz for the form of Rj(x):

Rj(x) =
m∑
k=1

Gk,j(x)Pk(x). (3.6)

To find the function Gk,j(x), we use variation of parameters. This enforces the following
conditions:

m∑
k=1

G′k,j(x)P (l)
k (x) = 0, l = 0, ...,m− 2. (3.7)

The first m− 1 derivatives of Rj(x) are then:

R′j(x) =
m∑
k=1

G′k,j(x)Pk(x) +Gk,j(x)P ′k(x) =
m∑
k=1

Gk,j(x)P ′k(x)

R
(l)
j (x) =

m∑
k=1

G′k,j(x)P (l−1)
k (x) +Gk,j(x)P (l)

k (x) =
m∑
k=1

Gk,j(x)P (l)
k (x), l ≤ m− 1.

(3.8)
This implies:

LRj(x) = R
(m)
j (x) +

m∑
n=1

qn(x)R(m−n)
j (x)

=
m∑
k=1

[
G′k,j(x)P (m−1)

k (x) +Gk,j(x)P (m)
k (x) +

m∑
n=1

qn(x)Gk,j(x)P (m−n)
k (x)

]

=
m∑
k=1

G′k,j(x)P (m−1)
k (x) +Gk,j(x)LPk(x)

=
m∑
k=1

G′k,j(x)P (m−1)
k (x),

(3.9)

BlRj(±1) =
m∑
n=1

alnR
(m−n)
j (±1)

=
m∑
k=1

m∑
n=1

alnGk,j(±1)P (m−n)
k (±1)

=
m∑
k=1

Gk,j(±1)BlPk(±1).

(3.10)

13



Equations (3.4), (3.7) and (3.9) can be combined for a set of conditions on Gk,j(x) and
Pk(x):

m∑
k=1

G′k,j(xi)P
(l)
k (xi) =



0 l < m− 1

0 xj ∈ V

0 xi 6= xj , xi /∈ V

1 xi = xj , xi /∈ V, l = m− 1.

(3.11)

By the last two conditions, Gk,j(x) is a multiple of a Birkhoff interpolant seen in Chapter
2. As discussed there, the value of G′k,j(x) can be specified at all but one of the CGL points
(1.1). The point at which G′k,j(x) is unknown prescribes the row removal. Thus, to each
Gk,j(x) we assign the point vk ∈ V as the point where G′k,j(x) is unknown.

The conditions on Gk,j(x), as defined by equation (3.11) and allowable by the algorithm
in Chapter 2, are:

G′k,j(xi) =

βk,j xi = xj

0 xi 6= xj , vk
(3.12)

where vk is that element in V associated with Gk,j(x) and βk,j is the scalar multiplier of
the Birkhoff interpolant. Following the algorithm from Chapter 2, Gk,j(x) is found to be:

Gk,j(x) = βk,j

N−1∑
n=0

bknj∂
−1
x Tn(x),

bknj = 2
cncjN

(
Tn(xj)−

TN (xj)
TN (vk)

Tn(vk)
)
.

(3.13)

There is a remaining degree of freedom in Gk,j(x): adding any constant will not change
any of the conditions G′k,j(x) needs to satisfy (3.12, 3.7). That is, replacing Gk,j(x) with
Gk,j(x) + Ck,j for any constant Ck,j in the ansatz (3.6) will not change any of the above
results.

With Gk,j(x) now defined, equation (3.7) enforces:

G′k,j(vk)P
(l)
k (vk) = 0, l = 0, ...,m− 2, k = 1, ...,m. (3.14)

As the value of G′k,j(vk) cannot be specified, this requires Pk(x) be the homogeneous solution
satisfying:

LPk(x) = 0, P (l)
k (vk) =

0 l = 0, ...,m− 2

1 l = m− 1
. (3.15)

Note the value of P (m−1)
k (vk) does not need to be 1, but all scalar multipliers can be placed

on Gk,j(x) and its scalar multiplier βk,j (3.12).
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This scalar multiplier βk,j is currently unknown. Equation (3.11) enforces the following
conditions on the values βk,j :

m∑
k=1

βk,jP
(l)
k (xj) =

1 l = m− 1

0 l = 0, ...,m− 2
(3.16)

for xj /∈ V . The system for equation (3.16) can be written as:


P1(xj) . . . Pm(xj)

... . . . ...
P

(m−1)
1 (xj) . . . P

(m−1)
m (xj)



β1,j
...

βm,j

 =


0
...
0
1

 . (3.17)

The system for this matrix is different for each j, meaning (N −m) such m ×m systems
need to be solved in order to construct R.

The function Rj(x) can be written in its entirety as:

Rj(x) =
m∑
k=1

(Ck,j +Gk,j(x))Pk(x), (3.18)

where Ck,j is the arbitrary constant added to Gk,j(x). Regardless of the values of Ck,j this
formula enforces LRj(xi) = δij if xj , xi /∈ V . All that remains are the boundary conditions:
BkRj(±1) = 0 for all k = 1, ...,m.

Equation (3.10) requires that BsRj(±1) =
∑m
k=1Ck,jBsPk(±1) +Gk,j(±1)BsPk(±1). As

in Chapter 2, this leads to two systems of equations:
B1P1(1) . . . B1Pm(1)

... . . . ...
Bk0P1(1) . . . Bk0Pm(1)



C1,j
...

Cm,j

 = −


∑m
k=1 B1Pk(1)Gk,j(1)

...∑m
k=1 Bk0Pk(1)Gk,j(1)



Bk0+1P1(−1) . . . Bk0+1Pm(−1)

... . . . ...
BmP1(−1) . . . BmPm(−1)



C1,j
...

Cm,j

 = −


∑m
k=1 Bk0+1Pk(−1)Gk,j(−1)

...∑m
k=1 BmPk(−1)Gk,j(−1)

 .
(3.19)

For the function Rj(x) such that xj = vk ∈ V , Gk,j(x) = 0 and the systems in equation
(3.19) have their right hand sides replaced by portions of the identity matrix.

3.1.1 The Wronskian

We use the particular set of homogeneous solutions, {Pk(x) | Pk(x) satisfies equation (3.15)},
to construct R. Note that given any fundamental set of solutions, {P̂n(x)}, we can always
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calculate {Pk(x)} by using the following system for each k:

Pk(x) =
m∑
n=1

γknP̂n(x),


P̂1(vk) . . . P̂m(vk)

... . . . ...
P̂

(m−1)
1 (vk) . . . P̂

(m−1)
m (vk)



γk1
...

γkm

 =


0
...
0
1

 . (3.20)

Notice the similarities between this system and that for βk,j (3.17).
The matrices presented in equations (3.17) and (3.20) have well-known inverses that

rely on the Wronskians of the homogeneous solutions. The Wronskian of a set of functions
{fk(x)}nk=1, denoted here as W ({fk}, x), is itself a function defined as the determinant of
the matrix: 

f1(x) . . . fn(x)
... . . . ...

f
(n−1)
1 (x) . . . f

(n−1)
n (x)

 . (3.21)

Using Cramer’s rule, the solution to the system:


f1(x) . . . fn(x)
... . . . ...

f
(n−1)
1 (x) . . . f

(n−1)
n (x)



a1
...
an

 =


0
...
0
1

 (3.22)

is equal to:

aj = (−1)j+nW ({fk}k 6=j ;x)
W ({fk};x) . (3.23)

Therefore, the systems in equations (3.17) and (3.20) do not need to be solved if the Wron-
skians are calculated instead.

To simplify calculating the Wronskians, one can apply Abel’s identity [1, 7]: if the
functions {fk}nk=1 form the fundamental solution set to a linear operator L such that
Lu(x) = u(n)(x) +

∑n
k=1 qk(x)u(n−k)(x), then the Wronskian can be expressed as:

W ({fk};x) = W ({fk};−1) exp
(
−
∫ x

−1
q1(s)ds

)
. (3.24)

3.1.2 Second order example

To see how this algorithm works, consider a second order differential equation:

u′′(x) + π2

4 u(x) = f(x), u(1) = 0, u′(−1) = 0. (3.25)

The linear operator has homogeneous solutions P1(x) = 2
π sin

(
πx
2
)
and P2(x) = − 2

π cos
(
πx
2
)
.
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Note that P1(0) = 0 and P ′1(0) = 1. Comparing to equation (3.15), this suggests x = 0
is an ideal point to include in the set V . The point x = 0 is only a CGL point if N is even.
Likewise, P2(±1) = 0 and P ′2(±1) = ±1, and so one of x = 1 or x = −1 should be the
second point in V . Let V = {1, 0} so that P1(x) and P2(x) are those homogeneous solutions
satisfying equation (3.15). For other choices of V , the required homogeneous solutions will
be linear combinations of P1(x) and P2(x).

Now that the set V has been chosen, the scalars βk,j can be found. These can either
be found through a series of system solves (3.17) or by calculating the Wronskians (3.23).
Using this second option, the Wronskian function W ({P1, P2};x) is the constant 2/π. The
values of βk,j are then:

β1,j = −π2P2(xj), β2,j = π

2P1(xj). (3.26)

The same results would be obtained using equation (3.17).
Next, the coefficient functions Gk,j(x) are calculated. These are found using equation

(3.13). These are the Birkhoff interpolants from Chapter 2 multiplied by the scalars βk,j .
Finally, the constants Ck,j , which will be used to satisfy the boundary conditions, are

found. The systems in equation (3.19) for this problem reduce to:

[
P1(1) P2(1)
P ′1(−1) P ′2(−1)

] [
C1,j

C2,j

]
=
[

−G1,j(1)P1(1)−G2,j(1)P2(1)
−G1,j(−1)P ′1(−1)−G2,j(−1)P ′2(−1)

]
. (3.27)

Note for this particular example, P2(1) = P ′1(−1) = 0, so the constants are C1,j = −G1,j(1)
and C2,j = −G2,j(−1).

For xj /∈ V , Rj(x) is now known: Rj(x) =
∑2
k=1(Ck,j + Gk,j(x))Pk(x). For R0(x) and

RN/2(x), which are associated with x0 = 1 and xN/2 = 0, the points that make up V ,
Gk,j(x) = 0 and both Rj(x) have the form

∑2
k=1Ck,jPk(x). The system for these Ck,j are:[

P1(1) P2(1)
P ′1(−1) P ′2(−1)

] [
C1,0 C1,N/2

C2,0 C2,N/2

]
=
[
1 0
0 1

]
. (3.28)

This ensures R0(1) = R′N/2(−1) = 1 and R′0(−1) = RN/2(1) = 0.
The differential equation is ill-posed if Dirichlet boundary conditions are used: for any

solution u(x), u(x) + P2(x) is also a solution, as P2(x) is a homogeneous solution and
P2(±1) = 0. In the construction of the inverse operator matrix (IOM), this can be seen
when solving for the constants Ck,j . The matrices in equation (3.19) would have a column
of zeros.
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3.2 Application of the inverse operator

Consider the m–th order differential equation:

Lu(x) = f(x), Bku(±1) = ak0, k = 1, ...,m. (3.29)

Let A be the matrix constructed as in Chapter 1 representing this operator. The system to
solve is then A~U = ~F .

Assuming the fundamental solution set is known, the inverse operator matrix (IOM) R
can be constructed as described above. The solution can then be found by ~U = R~F . Since
~U is found only through matrix multiplication, there is no error accrued from solving an
ill-conditioned system.

The necessity of knowing the fundamental solutions proves challenging for linear opera-
tors with non-constant coefficients. It is worth mentioning that the linear operator itself is
not needed to find R. That is, if one has a set of linearly independent vectors then one can
construct R representing the inverse of the linear operator which has the corresponding set
of functions as homogeneous solutions.

Consider a nonlinear differential equation:

(L+N )u(x) = f(x), Bku(±1) = ak0, k = 1, ...,m (3.30)

where L represents any linear portion of the operator, and N the nonlinear portion. Suppose
one were to use an iterative method to solve this equation numerically:

A~Un+1 = ~F −N (~Un), (3.31)

where A is the matrix constructed to represent the operator L with the boundary conditions
of the equation.

Let R be the inverse operator for A. Then the iteration becomes:

~Un+1 = R(~F −N (~Un)). (3.32)

For stability of this method, it is sufficient that ||R|| ≤ 1 and ||RN (~U)|| ≤ ||~U || for any
given vector ~U .

Consider a partial differential equation:

ut(x, t) + (L+N )u(x, t) = f(x), u(x, 0) = g(x), Bku(±1) = ak0, k = 1, ...,m (3.33)
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where the linear portion of the spatial operator, L, is of order m. Using IMEX Euler [3, 12],
the system is solved by:

∆t(A+ I/∆t)~Un+1 = ~Un + ∆t ~F −∆tN (~Un) (3.34)

where A is the matrix constructed to represent the operator L.
The linear operator on the left hand side of the equation is then L + 1/∆t. It is this

operator for which the fundamental solution set needs to be known to construct the matrix
R. Using this matrix, the method simplifies to:

~Un+1 = R~Un/∆t+R~F −RN (~Un). (3.35)

For stability of this method, it is sufficient that ||R|| ≤ ∆t, ||R|| ≤ 1 and ||RN (~U)|| ≤ ||~U ||
for any given vector ~U .

When L has only constant coefficients, the fundamental solution set for L + 1/∆t is a
perturbation of the fundamental solution set for L. For other types of linear operators, the
fundamental set may be difficult to find.

The stability condition ||R|| ≤ ∆t is disconcerting, as it is expected that smaller ∆t
will lead to improvements in the solution. Here it is suggested that smaller ∆t will instead
reduce the stability of the solution, indicating an ideal range of ∆t. The dependence of the
stability of R on parameters is explored further in later chapters.

3.3 Existence and uniqueness

Lemma 3. If {Pj(x)} is the fundamental solution set to a linear operator L1 of the form
L1u(x) = u(m)(x) +

∑m
n=1 pn(x)u(m−n)(x), then it is the fundamental solution set to the

linear operator L2 if and only if L2 = p(x)L1 for some nonzero function p(x).

Proof. Let {Pj(x)} be the fundamental solution set to a linear operator L1 of the form
described. For any nonzero function p(x), p(x)L1Pj(x) = 0, and so this fundamental solution
set is also the fundamental solution set of p(x)L1.

Suppose this fundamental solution set is also a solution set to the linear operator L2.
Then L1 and L2 have the same order. Suppose L2u(x) = q(x)u(m)(x)+

∑m
n=1 qn(x)u(m−n)(x).

Since both operators are linear, the set {Pj(x)} is also the fundamental solution set of
L3 = q(x)L1−L2. However, this new linear operator has order less than that of L1 and L2.
Therefore, for L3Pj(x) = 0 for all j requires L3 = 0, thus implying that L2 = q(x)L1.

A discrete version of this lemma is presented as a conjecture.

Conjecture 1. If span{~P1, ..., ~Pm} is the null space of the matrix Ā1 = D(m)+
∑m
n=1QnD

(m−n)

for diagonal Qn, then it is the null space of the matrix Ā2 =
∑m
n=0 Q̃nD

(m−n) if and only if
Ā2 = Q̃0Ā1.
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The proof techniques of lemma 3 can be applied here. It then suffices to prove that the
null space of a matrix of the form

∑k
n=0 Q̂nD

(n) has dimension at most k. This conjecture
can be used to show that using the inverse operator matrices incurs no additional aliasing
effects.

Consider the Chebyshev polynomials TN−1(x) and TN+1(x). These polynomials agree
on the CGL points (1.1). Taking their discrete representation on these points will result
in the vector ~T . If ~T is then used as the homogeneous solution to a first order linear
operator in the construction of an inverse operator matrix, the result should be applicable
to both the first order linear operator with homogeneous solution TN−1(x) and the operator
with homogeneous solution TN+1(x). However, if the above conjecture is true, the discrete
versions of these operators are identical. This could also be concluded from the uniqueness
of matrix inverses.

The construction of the inverse operator requires a linearly independent set of functions
satisfying equation (3.15). It should be noted that not every choice of V , which dictates the
row removal, allows such a set to be found. The set V must be chosen such that the matrix
of the coefficients γkn (3.20) is invertible.

For example, consider the following scenario for some second order differential operator.
The coefficient γkn is proportional to Pn(vk), where Pn(x) is one of the two homogeneous
solutions and vk is one of the two nodes in V . If Pn(x) has two or more roots, and V is
chosen from these roots, then γkn will be zero for all k. As such, the functions satisfying
equation (3.15) are proportional to the second of the two homogeneous solutions, and are
therefore linearly dependent.

As another example, consider again the differential equation from Subsection 3.1.2. If
V is chosen to be V = {1,−1}, then the homogeneous solutions required by the inverse
operator matrix algorithm are {P2(x),−P2(x)}. These functions are linearly dependent,
and their Wronskian W ({P2,−P2};x) = 0. This leads to singularities in equation (3.23)
and the matrices in equation (3.17) have two identical columns.
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Chapter 4

Comparison of Birkhoff
preconditioning and inverse
operators

The goal of both Birkhoff preconditioning and inverse operators is to provide more stable
algorithms in solving differential equations for large orders and fine discretization. It remains
a question which is more stable, and which is more suitable in any given scenario.

Consider the system to solve:
A~U = ~F . (4.1)

Three methods for solving it are presented here:

(i) ~U = A\~F

(ii) ~U = (I +BAtail)\(B ~F )

(iii) ~U = R~F

(4.2)

where I is the identity matrix, B is the Birkhoff preconditioning matrix, Atail is the matrix
A without the highest order derivative or boundary conditions, and R is the inverse operator
matrix (IOM). The Birkhoff preconditioning matrix is also referred to as the pseudospectral
integration matrix (PSIM). These methods will be referred to as (i) the standard method,
(ii) Birkhoff preconditioning, and (iii) inverse operators.

Note that for A = D̃(m) representing the linear operator L = ( d
dx)m with appropriate

boundary conditions, B and R approximate the same matrix, and Atail = 0. Note also
that D̃(m), B and R suffer from round-off error in their constructions. As such, comparing
the products D̃(m)B and D̃(m)R may not indicate which of B and R is a more accurate
approximation of the PSIM (or IOM) of appropriate order. However, this comparison will
indicate which of the two best approximates the inverse of the matrix D̃(m).

In the following analysis, each order of differentiation requires different boundary con-
ditions. For first order, the boundary condition is a Dirichlet condition at x = 1. For each
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Figure 4.1: Matrix 2-norm of the errors BD̃(m) − I and RD̃(m) − I for m = 1, 3 and 5 and
N = 64. Row removal is one dimensional for these orders. For first order, V = {xi}; for
third, V = {1, xi,−1}; for fifth, V = {1, x1, xi, xN−1,−1}.

higher order, one additional boundary condition is added in the following order: Dirichlet at
x = −1; Neumann at x = 1; Neumann at x = −1; and a condition on the second derivative
at x = 1.

Figures 4.1 and 4.2 show the matrix 2-norm of BD̃(m)−I and RD̃(m)−I form = 1, ..., 5,
N = 64 and various choices of V . For odd values of m the row removal can be parameterized
by one variable, while for even values the row removal should be considered in two variables
to maintain symmetry.

Figure 4.1 shows the results for odd orders. Higher order leads to higher error. Also,
PSIM more accurately approximates the inverse of D̃(m). This error is mostly constant for
varying row removal. For first order, there is a preference for row removal near x = −1. For
fifth order IOM, there is a preference away from these points.

For even orders, row removal is parameterized by two variables, and is symmetric along
the diagonal. Figure 4.2 shows the best row removal occurs when the elements of V are
closest to x = ±1.

In calculating IOM for fifth order, five homogeneous linearly independent solutions are
needed. Each of these is determined by an element of V (3.15). This dependence is contin-
uous since these homogeneous solutions are polynomials: if v1 is near v2, P (l)

1 (v2) is near
P

(l)
2 (v2) and P1(x) is nearly equal to P2(x). As such, the closer any two points in V are to

each other, the lower the condition number of the matrix in equation (3.17).
Figure 4.3 explores the effects of more evenly spaced row removal on the errors BD̃(m)−I

and RD̃(m)− I for m = 5 and N = 64. The set V contains 0, 1 and -1, as well as two other
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Figure 4.2: Matrix 2-norm of the errors BD̃(m)− I (lower half) and RD̃(m)− I (upper half)
for m = 2 (left) and 4 (right) and N = 64. Row removal is two dimensional for these orders.
For second order, V = {xi, xj}; for fourth, V = {1, xi, xj ,−1}.

Figure 4.3: Matrix 2-norm of the errors BD̃(m) − I (left) and RD̃(m) − I (right) for m = 5
and N = 64. Row removal is defined by V = {1, xi, 0, xj ,−1}.
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Figure 4.4: Matrix 2-norm of the errors BD̃(m) − I and RD̃(m) − I for m = 1, ..., 5 and
various N . Row removal is chosen as V = {−1} for m = 1, {1,−1} for m = 2, {1, 0,−1}
for m = 3, {1, x1, xN−1,−1} for m = 4, and {1, x1, 0, xN−1,−1} for m = 5.

points that define the axes of the figure. Figure 4.1 takes a point from the lower right
corners. This appears to be the ideal choice for this type of row removal. Again, PSIM is
the better approximation to the inverse of D̃(m).

Figure 4.4 shows the matrix 2-norm of the errors as functions of N . Error increases for
N and order m, for the given choices of row removal (see caption). With the exception of
m = 1, PSIM provides a more accurate approximation to the inverse of D̃(m). The difference
in the errors between PSIM and IOM remains nearly constant with changing N . For first
order differentiation, the homogeneous solution is the constant function P1(x) = 1. As such,
PSIM and IOM calculate identical matrices for m = 1.

Figure 4.5 gives the 2-norm of the error in the eigenvalues of the inverse approximations
for first and second order differentiation. That is, this shows a measure of the difference
between λD and 1/λD−1 where D = D̃(m) and D−1 is either the PSIM or IOM. Like the
matrix error, the error in eigenvalues increases with N .

Comparing higher order eigenvalues has proven difficult. While eigenvalues for first and
second order PSIMs and IOMs all have relatively close counterparts in the spectra of D̃(m),
higher order inverse approximations begin to develop eigenvalues that have no correspon-
dence with this spectra. This prevents appropriately measuring the error in expected eigen-
values.
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Figure 4.5: 2-norm of the error between the eigenvalues of D̃(m) and the reciprocals of the
eigenvalues of B and R for m = 1, 2 as functions of N .
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Chapter 5

Analysis of spectra

In Chapter 4, we compared how well the PSIM and IOM approximate the inverse of D̃(m).
In this chapter, we will compare the spectra of the PSIM and IOM with that of the matrix
representing the linear operator L. To perform such a comparison, it must first be established
what the expected eigenvalues are for a given choice of L, boundary conditions and V .

5.1 First order differentiation

First, consider the most basic differential operator L = d
dx with a Dirichlet boundary condi-

tion at x = 1 on the interval [-1,1]. Let V = {1}, then the matrix representing this operator,
constructed as in Chapter 1, is:

D̃ =


1 0 . . . 0
D10 D11 . . . D1N
...

... . . . ...
DN0 DN1 . . . DNN

 =


1 0 . . . 0

~d D̂

 (5.1)

where Dkj is the element defined in equation (1.2).
The discrete eigenvalue problem (DEVP) for this matrix, D̃~u = λ~u, can be written as:

u0 = λu0

u0~d+ D̂ũ = λũ
(5.2)

where ũ is ~u without the first element. The first condition can only be satisfied if λ = 1 or
u0 = 0. In the latter case, the eigenvalue problem reduces to D̂ũ = λũ. The eigenvalues of
DEVP are then 1 and the eigenvalues of this reduced problem.

DEVP is an approximation to the continuous eigenvalue problem (CEVP):

Lu(x) = u′(x) = λu(x) x ∈ [−1, 1), B1u(1) = u(1) = λu(1). (5.3)
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The linear operator is not enforced at the point x = 1, so the domain of the problem is
[−1, 1). The boundary condition on the eigenvalue problem arises from the first row of the
matrix D̃. This row itself comes from the type of boundary condition of the boundary value
problem originally considered.

Compare this with the eigenvalue problem for the boundary value problem (BEVP):

Lu(x) = u′(x) = λu(x) x ∈ [−1, 1], B1u(1) = u(1) = 0. (5.4)

Note that the eigenvalue does not appear in the boundary condition. Instead, BEVP has a
fixed boundary condition, unlike both DEVP (5.2) and CEVP (5.3). While DEVP does not
approximate BEVP, BEVP is approximated by the reduced problem for λ 6= 1, D̂ũ = λũ.
Thus, DEVP allows only one eigenvalue not found in BEVP.

Given the boundary condition of CEVP (5.3), either λ = 1 or u(1) = 0. Since the
solutions to the differential equation are of the form aeλx for some constant a, there is no
finite choice of λ 6= 1 that allows u(1) = 0. As such, CEVP admits a single eigenvalue λ = 1.

In contrast, the matrix D̃ is nonsingular, and must have N+1 eigenvalues. While one of
these will be an approximation to the CEVP eigenvalue λ = 1, the remaining N correspond
to computational modes. These computational modes will be polynomials {pn} of degree N
satisfying the conditions:

p′n(xi) = λpn(xi), i = {1, ..., N}, pn(1) = 0. (5.5)

Figure 5.1 shows the eigenvalues of the matrix D̃ for the number of Chebyshev points
N = 16, 32 and 64. Trefethen and Trummer [17] give a condition on the eigenvalues so
that the eigenvectors both approximate exponentials and satisfy the homogeneous Dirichlet
boundary condition at x = 1.

Consider this problem again with a new choice of V . Let V = {xi} for some i =
{1, ..., N}. The matrix D̃ representing the boundary value problem can again be constructed
as in Chapter 1:

D̃ =



D00 D01 . . . D0N
...

... . . . ...
Di−1,0 Di−1,1 . . . Di−1,N

1 0 . . . 0
Di+1,0 Di+1,1 . . . Di+1,N

...
... . . . ...

DN0 DN1 . . . DNN


=



d1 d̂>1 d2 d̂>2

~d1 D̂1 ~d2 D̂2

1 0 . . . 0 0 0 . . . 0

~d3 D̂3 ~d4 D̂4


. (5.6)
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Figure 5.1: Eigenvalues of the matrix D̃ representing first order differentiation with a Dirich-
let boundary condition at x = 1 for N = 16, 32 and 64, respectively. Only the eigenvalue
λ = 1 is predicted by the continuous representation of this problem. All other eigenvalues
are the result of the discretization, though their eigenvectors approximate rapidly decaying
exponentials [17].

DEVP then becomes:
u0d1 + uid2 +d̂>1 ũ1 + d̂>2 ũ2 = λu0

u0~d1 + ui~d2 +D̂1ũ1 + D̂2ũ2 = λũ1

u0 = λui

u0~d3 + ui~d4 +D̂3ũ1 + D̂4ũ2 = λũ2

(5.7)

where ũ1 is the vector composed of u1 through ui−1 and ũ2 the vector composed of ui+1

through uN . If u0 = ui = 0 then DEVP reduces to:[
D̂1 D̂2

D̂3 D̂4

] [
ũ1

ũ2

]
= λ

[
ũ1

ũ2

]
. (5.8)

However, this would require d̂>1 ũ1 + d̂>2 ũ2 = 0, which is true only if ũ1 is orthogonal to d̂>1
and ũ2 is orthogonal to d̂>2 . There can be no expectation that the eigenvectors of the reduced
problem will satisfy this condition. As such, there is no longer an obvious correspondence
between DEVP (5.7) and BEVP (5.4).
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BEVP can still be retrieved from the matrix D̃ by changing how the boundary condition
is applied. First note that the matrix D̃ can be written in the form:

D̃ =



D00 D01 . . . D0N
...

... . . . ...
Di−1,0 Di−1,1 . . . Di−1,N

1 0 . . . 0
Di+1,0 Di+1,1 . . . Di+1,N

...
... . . . ...

DN0 DN1 . . . DNN


=



~d1 D̂1

1 0 . . . 0

~d2 D̂2


(5.9)

where ~d1, ~d2, D̂1 and D̂2 are distinct from previous definitions. The system D̃~u = ~f can
then be rewritten as: [

D̂1

D̂2

]
ũ = f̃ − fi

[
~d1
~d2

]
(5.10)

where ũ is ~u without the first element and f̃ is ~f without the element fi. The eigenvalue
problem for the matrix of this new system approximates BEVP. DEVP will reduce to this
system if the boundary condition is in the first row, but as this requires row interchanges
the eigenvalues will not be the same.

DEVP is an approximation to the CEVP:

u′(x) = λu(x) x ∈ [−1, 1] \ {xi}, u(1) = λu(xi). (5.11)

The differential equation again only admits solutions of the form u(x) = aeλx, resulting in
the following equation for the eigenvalues:

eλ
(
1− λeλ(xi−1)

)
= 0. (5.12)

Since eλ 6= 0, this can be reduced to:

λ(xi − 1) + ln(λ) = 0. (5.13)

Note that to include all roots of this equation, every branch cut of ln(λ) must be considered.
For xi 6= 1, this equation has an infinite number of roots, thus leading to an infinite

number of CEVP modes (5.11). However, the discrete system is limited in its ability to
approximate the corresponding exponentials. To maximize the number of CEVP modes
that can be reasonably approximated by the Chebyshev polynomials, the number xi − 1
must be maximized in magnitude. Thus, choosing xi = −1 will lead to the maximization of
CEVP modes, and the minimization of computational modes, for the discrete system.
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Figure 5.2: Eigenvalues of the matrix D̃ representing first order differentiation with a Dirich-
let boundary condition at x = 1 for V = {−1} and N = 32. The red line represents the
zero contour of the real part of equation (5.13). The zero contour of the imaginary part of
equation (5.13) intersects with this line once for each branch cut, on or near each eigenvalue
that lies along it.

Figure 5.2 presents the eigenvalues of the matrix D̃ for the case described. The red line
represents the zero contour of the real part of equation (5.13). The imaginary part must
include all branch cuts, and is omitted for this reason. All eigenvalues lying along the red
line represent close agreement between the numerical eigenvector and the exponential they
approximate. The remaining eigenvalues are the result of the discretization.

Equation (5.13) only predicts 22 of 33 eigenvalues. As such, it is still not possible to find
the exact accuracy of the eigenvalues of the matrices, as was hoped in the introduction to
this chapter.

Consider the general first order ODE eigenvalue problem:

Lu(x) = u′(x) + p(x)u(x) = λu(x). (5.14)

Let P (x) be the anti-derivative of the function p(x), and let the ODE include a Dirichlet
boundary condition at x = 1.

In the discretization of the problem, let V = {xi}. The matrix A for this problem then
has the boundary condition operator represented in the row associated with xi. The CEVP
is thus the eigenvalue problem Lu(x) = λu(x) with the boundary condition B1u(1) = u(1) =
λu(xi). Following the procedure outlined above, it can be shown that there is an equation

30



Figure 5.3: Eigenvalues of the matrix A representing the first order ODE u′(x) + x2u(x)
with a Dirichlet boundary condition at x = 1. The real part of equation (5.15) is plotted as
a red line, while the real part of equation (5.13) is plotted as a blue line. The inclusion of
the p(x)u(x) term in the ODE appears to mostly be a translation along the real axis. As
well, the smallest eigenvalues have their imaginary parts removed and their real parts made
unequal.

for λ equivalent to equation (5.13):

λ(xi − 1) + ln(λ)− P (xi) + P (1) = 0. (5.15)

Consider the example with p(x) = 3x2, P (x) = x3 and xi = −1 with N = 32. Figure 5.3
shows the eigenvalues of the matrix A representing the discretization of this problem. The
real part of equation (5.15) is plotted as a red line, while the real part of equation (5.13) is
plotted as a blue line. While the most obvious change is a translation along the real axis,
there is a minor effect on the two smallest eigenvalues. These eigenvalues are now purely
real, and unequal. The smallest eigenvalue does not appear to fall on the red zero contour,
suggesting it is now a computational eigenvalue, rather than a CEVP one.

Recall that in Chapter 4 it was found that, for first order differentiation, the inverse of
the differentiation matrix is best approximated for V = {−1}. It can be conjectured that
this is due to the increased number of CEVP modes approximated by the DEVP. It can
be further conjectured that this close agreement will lead to more accurate results when
solving A~u = ~f .

Consider the problem:
u′(x) = 2√

π
e−x

2
, u(1) = 0. (5.16)
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Figure 5.4: 2-norm of the error in the numerical solution to equation (5.16) using the
standard method, preconditioning and inverse operators, with V = {xi} where i varies
from 0 to N = 32.

The solution is the error function, plus a constant. Let V = {xi} and let i vary from 0 to N .
The error of the numerical solution for the standard method, preconditioning and inverse
operators is provided in figure 5.4.

There is no apparent correlation between the accuracy of the solution and the row
removal. As such, the conjecture that a close agreement of eigenvalues between the involved
matrices will lead to an increase in accuracy is not supported by this evidence.

5.1.1 Eigenvalues of inverse operators

Consider the first order ODE with constant coefficients:

u′(x) + au(x) = f(x), u(1) = α. (5.17)

Suppose V is chosen to be {−1}. As has been shown, the eigenvalues of the corresponding
CEVP satisfy the equation:

2(a− λ) + ln(λ) = 0. (5.18)

The roots of this equation are known to be related to the Lambert W function [9]:

λ = −W
(
−2e−2a

)
/2. (5.19)

Each eigenvalue is found on a different branch of the W function.
Let R be the IOM whose construction is described in Chapter 3. The eigenvalues of R are

expected to approximate the reciprocals of the eigenvalues defined by the above equations.
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Figure 5.5: The eigenvalues of A and the reciprocal of the eigenvalues of R (left) ; ex-
act eigenvalues as defined in equation (5.19), eigenvalues of A and the reciprocal of the
eigenvalues of R (right). This figure uses a = 1 and N = 64.

Likewise, let A be the matrix whose construction is described in Chapter 1. As this section
has shown, most of the eigenvalues of A can be defined by the above equations.

The eigenvalues of A and the reciprocal of the eigenvalues of R are plotted in the left of
figure 5.5. The right of this figure also includes the exact eigenvalues as defined by equation
(5.19). These results are obtained using a = 1 and N = 64. 36 of the eigenvalues coincide
in the right figure, with several more closely approximating each other.

Away from these CEVP modes, the eigenvalues of R and A display a fair amount of
disagreement. The matrix R was constructed with the idea that it would act as an inverse to
A. However, because the matrix A is not used explicitly in the construction of R, there can
be no reasonable expectation that R converges to A−1. Indeed, by examining the spectra
of A and R it is clear that away from the CEVP eigenvalues there is little agreement.

For R to be used as described in Chapter 3 only requires that the eigenvalues of R agree
with the CEVP eigenvalues. As has already been stated, 36 of the eigenvalues coincide.
Figure 5.6 shows the error of 19 of these eigenvalues, specifically those with non-negative
imaginary part. The magnitude of these eigenvalues increases as the index does. It is clear
the error is in some way systematic. The first twelve are distinctly more accurate. As the
magnitude increases, the accuracy drops.

These results hold for a = 1, N = 64 and V = {−1}. The effects of a changing a on the
second-smallest eigenvalue are presented in figure 5.7. As the magnitude of a increases, the
accuracy of the CEVP eigenvalues of R decreases significantly.
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Figure 5.6: Absolute error of 19 CEVP eigenvalues of the matrices A and R. All of these
eigenvalues have non-negative imaginary part. The magnitude of the eigenvalues increases
with the index.

Figure 5.7: Effects of a changing a on the second-smallest eigenvalue. The smallest eigenvalue
approaches zero and always coincides for both A and R. The errors for A at a = 11 and
a = 16 are exactly zero.
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Recall that to construct R, the fundamental solution set is used. For this differential
equation, this solution set is {e−a(x+1)}. As the magnitude of a increases this solution has
steeper curves. This makes it harder to approximate by polynomials, and thus harder to
use in the construction of R.

For a > 0, the fundamental solution begins at 1 and decays to the right. For sufficiently
large a, underflow causes zeros to appear in the solution. For a < 0, the solution begins at
1 and grows to the right. For sufficiently large −a, overflow and amplification of error begin
to disrupt the eigenvalues.

It is clear that inverse operators only work in a specific region of the values of a. While
small magnitudes of a provide accurate eigenvalues, large magnitudes of a cause massive
separation between the exact eigenvalues and those of R. For any method employing R to
be theoretically valid, the CEVP eigenvalues of R must approximate the exact eigenvalues.
Therefore, R should not be used for equations where the magnitude of the coefficients differ
by an order of magnitude.

5.2 Second order differentiation

Let L = ( d
dx)2 with Dirichlet boundary conditions. For V = {1,−1}, the corresponding

DEVP includes the conditions u(1) = λu(1) and u(−1) = λu(−1). The corresponding
CEVP is:

u′′(x) = λu(x), (1− λ)u(1) = (1− λ)u(−1) = 0. (5.20)

The boundary conditions can be satisfied with λ = 1. This eigenvalue has multiplicity 2,
with eigenfunctions u(x) = sinh(x± 1).

All other eigenfunctions have homogeneous boundary conditions, u(±1) = 0. These
eigenfunctions and their eigenvalues are well-known [8, 10, 19] :

λ = −(kπ/2)2, u(x) = sin
(
kπ

2 (x− 1)
)
, k ∈ N. (5.21)

Like in the first case of first order differentiation (5.2), DEVP can be reduced to an
eigenvalue problem on the interior. This reduced problem approximates the BEVP:

u′′(x) = λu(x), u(±1) = 0. (5.22)

Thus, DEVP and CEVP allow only two eigenvalues not found in BEVP: λ = 1 with multi-
plicity 2.

The DEVP and CEVP eigenvalues of the differential operator are presented together in
figure 5.8. It is well established [19, 11] that for index k ≤ 2N

π , the DEVP eigenvalues are
good approximations to those of the CEVP. For larger k, larger N is required to resolve the
eigenfunctions in a Chebyshev expansion [11].
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Figure 5.8: Comparison of DEVP and CEVP eigenvalues and the reciprocal of the eigen-
values of the preconditioner for the second order differentiation operator with Dirichlet
boundary conditions, V = {1,−1} and N = 32. The DEVP eigenvalues are considered
good approximations of the CEVP eigenvalues for n− 2 = k ≤ 2N

π [19, 11].

Now consider the same L and boundary conditions, but with V = {1, xi} for some
i ∈ {1, ..., N}. The CEVP is then:

u′′(x) = λu(x), (1− λ)u(1) = 0, u(−1)− λu(xi) = 0. (5.23)

To establish the eigenvalues, note that any eigenfunction is a linear combination of e
√
λx

and e−
√
λx. Applying the boundary conditions leads to the following system:[

(1− λ)e
√
λ (1− λ)e−

√
λ

e−
√
λ − λe

√
λxi e

√
λ − λe−

√
λxi

] [
A

B

]
=
[
0
0

]
(5.24)

and ultimately to the equation for the eigenvalues:

(1− λ)
(
sinh(2

√
λ) + λ sinh(

√
λ(xi − 1))

)
= 0. (5.25)

The zero contours of the real and imaginary parts of equation (5.25) are plotted in figure
5.9 alongside the DEVP eigenvalues of the operator in equation (5.23) for i = 1, N/2, and N .
The intersections of these contours provide the CEVP eigenvalues. The DEVP eigenvalues
are near or on these intersections, especially for low magnitudes of λ, and therefore low
frequency eigenfunctions. As i approaches N , the contours become parallel in a hyperbolic
geometry, intersecting only along the real axis, specifically for Re(λ) < 0.
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Figure 5.9: Zero contours of the real (red) and imaginary (blue) parts of equation (5.25), as
well as the numerical eigenvalues of the operator in equation (5.23) for i = 1, N/2, and N ,
respectively. The numerical eigenvalues are near or on the intersections of the red and blue
contour lines.

If pure real eigenvalues are desired, it is clear that
√
λ must be either pure real or pure

imaginary. Let ωR + iωI =
√
λ. This leads to the equations:

ωR = 0 =⇒ sin(2ωI) − ω2
I sin((xi − 1)ωI) = 0

ωI = 0 =⇒ sinh(2ωR) + ω2
R sinh((xi − 1)ωR) = 0.

(5.26)

Consider now the linear operator L = ( d
dx)2 + d

dx with Dirichlet boundary conditions
and V = {1, xi} where i = 1, ..., N . This has the CEVP:

u′′(x) + u′(x) = λu(x), (1− λ)u(1) = 0, u(−1)− λu(xi) = 0. (5.27)

This will ultimately lead to the following equation for the eigenvalues:

sinh
(

2
√
λ+ 1/4

)
− λe−(xi+1)/2 sinh

(
(1− xi)

√
λ+ 1/4

)
= 0. (5.28)

The zero contours of the real and imaginary parts of equation (5.28) are plotted in figure
5.10 alongside the DEVP eigenvalues of the operator in equation (5.27) for i = 1, N/2, and
N . The intersections of these contours provide the CEVP eigenvalues. This plot is very
similar to figure 5.9, and for i = N , the CEVP eigenvalues are:

λk = 1/4− (πk/2)2, (5.29)
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Figure 5.10: Zero contours of the real (red) and imaginary (blue) parts of equation (5.28),
as well as the DEVP eigenvalues of the operator in equation (5.27) for i = 1, N/2, and N ,
respectively. The DEVP eigenvalues are near or on the intersections of the red and blue
contour lines.

which differs from those of equation (5.23) by 1/4.

5.2.1 Eigenvalues of inverse operators

Consider the second order ODE with constant coefficients:

u′′(x) + au(x) = f(x), u(±1) = α±. (5.30)

Suppose V = {−1, 1}, then the CEVP is:

u′′(x) + (a− λ)u(x) = 0, (1− λ)u(±1) = 0. (5.31)

It is straightforward to show that the eigenvalues and eigenfunctions are:

λ = a− (kπ/2)2, u(x) = sin
(
kπ

2 (x− 1)
)
, k ∈ N. (5.32)

These are the same solutions for the operator L =
(
d
dx

)2
with Dirichlet boundary conditions

presented above, translated in λ by a.
Let A be the matrix representing the second order ODE, and R the matrix repre-

senting the inverse operator. For the moment consider a > 0, so that the fundamental
solution set is {sin(

√
ax), cos(

√
ax)}. Note that in the limit as a approaches zero we re-

trieve the operator for second order differentiation, and the fundamental solution set ap-
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Figure 5.11: Eigenvalues of A and R−1 within 1e − 6 relative error of the CEVP eigenval-
ues. The left figure contains the negative eigenvalues, while the right contains the positive
eigenvalues.

proaches {
√
ax, 1}. It may be advisable, then, to normalize the solution set, using instead

{sin(
√
ax)/
√
a, cos(

√
ax)}.

For a = (kπ/2)2 for some k ∈ N, λ = 0 is an eigenvalue. This will lead to a singular
matrix A. Recall from Chapter 3 that to construct the matrix R it is necessary that the
solution set satisfy P1(1) = 0, P ′1(1) = 1, P2(−1) = 0 and P ′2(−1) = 1. The fundamental
solution set for such values of a has the property that one solution has homogeneous Dirichlet
boundary conditions, while the other has homogeneous Neumann boundary conditions. As
such, {P1(x), P2(x)} do not form a linearly independent set of functions. Ultimately, this
will lead to a singular matrix R. These issues can be avoided by choosing a different set V ,
as this will change the underlying eigenvalue problem.

The eigenvalues of A and R−1 for several values of a are presented in figures 5.11
and 5.12. Figure 5.11 shows those eigenvalues that are within 1e − 6 relative error of the
CEVP eigenvalues. On the left are the negative eigenvalues, and on the right the positive
eigenvalues. The spectra of A and R−1 coincide closely for these modes. Note that as a
increases, fewer eigenvalues of R−1 are within 1e− 6 relative error of the exact.

Figure 5.12 shows the remaining eigenvalues, either those with substantial error or with-
out a corresponding CEVP eigenvalue. The negative eigenvalues with large magnitude are
computational modes found in both A and R−1. However, the large positive and small neg-
ative eigenvalues of R−1 are unique to the IOM. By inspection, it is found that these eigen-
values correspond to eigenvectors that approximate the functions TN (x) sin

(
kπ
2 (x− 1)

)
for

k ∈ N, where TN (x) is the N–th degree Chebyshev polynomial.
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Figure 5.12: Eigenvalues of A and R−1 whose relative error with the CEVP eigenvalues
exceeds 1e − 6. The left figure contains the negative eigenvalues, while the right contains
the positive eigenvalues.

Figure 5.13: Computational eigenvalues of R−1. Positive eigenvalues are on the left, while
negative eigenvalues are on the right. Each asymptote appears near a = (kπ/2)2 for some
k ∈ N.
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Figure 5.13 shows the dependence of these computational eigenvalues on the parameter
a. As a nears the values (kπ/2)2, where the matrix A is singular, the high magnitude
negative eigenvalues each move up to a higher band, with the largest magnitude negative
eigenvalue changing sign. Once this largest negative eigenvalue becomes positive, it begins
to decrease towards zero, eventually crossing the zero line at the next a = (kπ/2)2. This now
smallest negative eigenvalue continues to decrease, plateauing to some value in the region
of −1e3.

The behaviour of the large positive eigenvalues is unusual, and may cause issues when
using the IOM. No large and positive eigenvalues are expected, and given how far they are
from any CEVP eigenvalues, solutions containing their eigenvectors may not have physical
meaning.

Suppose V = {1, 0} instead. It is straightforward to show that the fundamental solution
set required to construct R is:

P1(x) = 1√
a

sin(
√
ax), P2(x) = cos(

√
a)√

a
sin(
√
ax)− sin(

√
a)√
a

cos(
√
ax). (5.33)

If sin(
√
a) = 0 then P1(x) is linearly dependent on P2(x), and the same issues as before

will arise. Therefore, this choice of V will not work for a = (kπ)2. Indeed, any choice of V
will have values of a for which a linearly independent set of solutions cannot be found to
construct R.

Now consider a < 0. The fundamental solution set is {sinh(
√
|a|x)/

√
|a|, cosh(

√
|a|x)}.

There are no values of a for which the required solution set is linearly dependent, nor any
values for which zero is an eigenvalue. Therefore, the issues presented above are not expected
to arise.

Figure 5.14 shows the eigenvalues that match with the predicted eigenvalues up to a
relative error of 1e− 6. As a increases in magnitude, the eigenvalues grow larger. For a < 0,
no positive eigenvalues are expected, excepting an eigenvalue of 1 with algebraic multiplicity
2.

Figure 5.15 shows the eigenvalues that differ from the predicted eigenvalues by a relative
error greater than 1e − 6. Although no positive eigenvalues other than 1 were expected,
several are found for large magnitudes of a.

Figure 5.16 explores this behaviour further. It shows similar features with figure 5.13,
with large magnitude negative eigenvalues increasing in levels, with the largest magnitude
becoming positive near asymptotes at certain values of a. For a > 0, these asymptotes
occurred near values of a for which the matrix A was singular and the required solution
set to construct R was linearly dependent. For a < 0, they occur at a = −((2k + 1)π/2)2

for k ∈ N. The matrix A is nonsingular at these values, and the required solution set to
construct R is always linearly independent for a < 0.
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Figure 5.14: Eigenvalues of A and R−1 within 1e−6 relative error of the CEVP eigenvalues.
Positive eigenvalues are on the right, while negative eigenvalues are on the left.

Figure 5.15: Eigenvalues of A and R−1 whose relative error with the CEVP eigenvalues
exceeds 1e− 6. Positive eigenvalues are on the right, while negative eigenvalues are on the
left.
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Figure 5.16: Computational eigenvalues of R−1. Positive eigenvalues are on the left, while
negative eigenvalues are on the right. The asymptotes are at or near the values a = −((2k+
1)π/2)2.

The positive eigenvalues in figure 5.16 approach zero much slower than those for a > 0.
Each has a corresponding negative eigenvalue of similar magnitude that likewise approaches
zero.

It is possible that these eigenvalues arise from round-off error in calculating the fun-
damental solution set. As a increases in magnitude, the homogeneous solutions become
steeper. With sufficiently large |a|, underflow causes zeros to appear in the solution. This
error can easily accumulate and amplify in the construction of R.
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Chapter 6

Experiments

We now examine how these matrices perform using a number of examples. Comparison is
made to accuracy, condition number, robustness and stability.

6.1 Singular example

Consider the following example:

Lu(x) = xu′′(x)− (x+ 1)u′(x) + u(x) = f(x), u(±1) = 1. (6.1)

Let f(x) = −x2 so that u(x) = x2. This problem contains a singularity: at x = 0, the
problem reduces to first order.

The collocation system for this problem can be represented by:

[XD2 − (X + 1)D + I]U = F (6.2)

where X is a diagonal matrix with entries equal to the CGL points (1.1). Rows prescribed
by V are replaced with boundary conditions.

Let B be the preconditioning matrix constructed for second order differentiation with
Dirichlet boundary conditions. Because of the matrix X multiplying D2, this problem forces
the use of the modal method described in section 2.2:

[X − (X + 1)DB +B]Umodal = F, U = BUmodal. (6.3)

This example has a fundamental set of solutions P̂1(x) = x + 1 and P̂2(x) = ex. Note
that the inverse operator matrix R constructed from this set of solutions assumes the linear
operator has leading order coefficient 1. As such, to use R requires dividing the equation
through by x. For f(x) indivisible by x this may prove disastrous.

The left of figure 6.1 shows several interesting features. The inverse operators provides
the worst accuracy for all choices of V except V = {1, 0}, where it provides one of the best.
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Figure 6.1: Error (left) and condition number (right) for the standard, modal precondition-
ing and inverse operator methods in solving equation (6.1) as a function of the second row
removed. In this case, V = {1, xk} where k runs from 1 to N = 64.

For this choice of V , the condition numbers of the systems for both standard and modal
preconditioning jump up several orders of magnitude, as does their error.

For the standard method, best accuracy is attained for V = {1, x1}. Best accuracy for
modal preconditioning is attained near V = {1,−1}. For simplicity, we will not consider
the actual minimum, occurring somewhere between -1 and 0.

Using these choices of V that appear to maximize accuracy, the methods are tested for
several values of N . Figure 6.2 shows the results for all three methods with V = {1, x1} for
the standard method, {1,−1} for modal preconditioning and {1, 0} for inverse operators.

For almost all N inverse operators provide the greatest accuracy. It also proves the
most robust to increasing N . The modal preconditioning also shows an improvement of
approximately two orders of magnitude over the standard method. The condition number for
preconditioning increases only slightly less than that of the standard method with increasing
N .

It is curious that V = {1, 0} should be the best choice for the inverse operators, as there
is no linear combination of the two homogeneous solutions that satisfies equation (3.15).
Any combination that satisfies P (0) = 0 also has P ′(0) = 0. It should be noted that this
choice of V effectively removes the singularity.

In practice, using the exact derivatives of the homogeneous solutions to compute R
causes singularities for this V . The above results are obtained by using the Chebyshev
differentiation matrix D to calculate approximate derivatives. It seems that by allowing
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Figure 6.2: Error (left) and condition number (right) for the standard, modal precondition-
ing and inverse operator methods in solving equation (6.1) as a function of N . V is chosen
to be {1, x1} for the standard method, {1,−1} for modal preconditioning and {1, 0} for
inverse operators.

some small error in the value of the derivatives, the matrix R can take advantage of removing
the singularity.

6.2 5th order example with constant coefficients

The preconditioning reduces the effects of the highest order numerical differentiation, while
the inverse operator reduces the effects of all orders. Therefore, the inverse operator should
produce superior results when used on an example where the second highest order numerical
differentiation matrix is badly conditioned.

Consider the following fifth order example:

u(5)(x) + u(4)(x)− u′(x)− u(x) = f(x) (6.4)

with f(x) chosen such that u(x) = sin(x2), Dirichlet and Neumann boundary conditions at
x = ±1 as well as the second derivative set at the boundary x = 1.

The fundamental set of solutions for this problem is straightforward to find:

P1(x) = sin(x), P2(x) = cos(x), P3(x) = ex, P4(x) = e−x, P5(x) = xe−x. (6.5)

The Birkhoff preconditioning will reduce the effects of the fifth order differentiation
matrix, but not those of the fourth order matrix. In contrast, the inverse operator will
remove the effects of all differentiation matrices.
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Figure 6.3: 2-norm of error (left) and condition number of systems (right) in solving equation
(6.4) for N = 64 as a function of central row removal. In this case, V = {1, x1, xk, xN−1,−1}
where k runs from 2 to N − 2.

Figure 6.3 shows the results of solving equation (6.4) for N = 64 for various choices
of V . Inverse operators show the best results for more choices of V , but preconditioning
provides the best accuracy overall, with V = {1, x1, xN−2, xN−1,−1}. Best results with
inverse operators occurs for row removal near V = {1, x1, 0, xN−1,−1}. Results for the
standard method have no apparent relationship with the choice of V .

Condition numbers for the standard and preconditioned systems are shown on the right
side of figure 6.3. The condition number for the standard method is nearly constant for all
tested choices of V . The condition number for the preconditioned system closely matches
the shape of the error in the left of the figure.

Figure 6.4 shows the results of solving equation (6.4) for several values of N using V =
{1, x1, 0, xN−1,−1} for the standard method and inverse operators, and {1, x1, xN−2, xN−1,−1}
for the preconditioning. The standard method struggles to find an accurate solution, espe-
cially for large N . The preconditioning provides the most accurate results for N < 256,
after which the inverse operators is more accurate.

The condition number of the preconditioned system increases slower than the standard
system. However, for sufficiently large N the system is still ill-conditioned. It is for these
values of N that the inverse operators provide the best results, as they arrive at the answers
without solving an ill-conditioned system. Best accuracy is still obtained between N = 32
and N = 64 using the preconditioned system. Therefore, the inverse operators method is
only preferable when high resolution is required.
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Figure 6.4: 2-norm of error (left) and condition number of systems (right) in solving equation
(6.4) for various N . V is chosen to be {1, x1, 0, xN−1,−1} for the standard method and
inverse operators, and {1, x1, xN−2, xN−1,−1} for the preconditioning.

6.3 5th order example with non-constant coefficients

Consider the following example from Wang et al. [18]:

u(5)(x) + sin(10x)u′(x) + xu(x) = f(x), u(±1) = u′(±1) = u′′(1) = 0 (6.6)

where f(x) is chosen such that the solution is u(x) = sin3(πx).
The fundamental set of solutions will pose a challenge to find. Instead, one can use the

null space of the matrix for the standard method without boundary conditions. This matrix
is represented by Ā in Chapter 1. However, round-off error can cause the calculated null
space to be of higher dimension than the order of the problem.

As a second alternative, it can be noted that the fundamental set of solutions solves the
system:

AP = Ī (6.7)

where Ī is the matrix formed by the columns of the identity matrix associated with the
points in V . Using this approach means the standard method must be used to construct
the inverse operator R. This removes many of the benefits of using R.

Figure 6.5 shows the results for various N using V = {−1, xN−1, 0, x1, 1}. The left side
shows the 2-norm of the error, while the right side shows the condition number of the
relevant system. The condition number of the inverse operators is not shown as it uses only
matrix multiplication, and so has a condition number of 1.
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Figure 6.5: 2-norm of error in solving equation (6.6) (left) and condition number of systems
used to solve equation (6.6) (right) as functions of the number of Chebyshev points, N . Since
the solution found using inverse operators is arrived at through matrix multiplication, the
condition number is 1.

It is clear that the inverse operators should not be used for this problem, as there are no
gains in accuracy and a system must still be solved. The preconditioning removes the largest
source of round-off error, leaving a significantly smaller condition number. Not only is the
preconditioning more accurate for all values of N , it shows greater robustness to increasing
N .

Figure 6.6 shows the results for N = 64 and V = {−1, xN−1, xk, x1, 1} where k varies
from 2 to N − 2. The 2-norm of the error is presented on the left for all three methods. No
apparent trend is seen for inverse operators or the standard method. The preconditioning
shows a preference for xk near 0. The right side of the figure shows the condition number
of the preconditioning. While greatest accuracy is found by removing rows near the centre,
this leads to the largest condition number.

6.4 Nonlinear example

The following nonlinear differential equation is taken from Ascher et al. [2]:

u(4)(x) = u′(x)u′′(x)− u(x)u(3)(x), u(±1) = u′(−1) = 0, u′(1) = 1. (6.8)

The solution can be found using an iterative method.
Construct the standard matrix A and the preconditioning matrix B for fourth order dif-

ferentiation with Dirichlet and Neumann boundary conditions. Choose V = {−1, xN−1, x1, 1}.
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Figure 6.6: 2-norm of error in solving equation (6.6) (left) and condition number of the
preconditioned system (right) as functions of the central row removed for N = 64.

Let U0 = 0 be the initial guess, and Un be the solution at the n–th iteration. The right
hand side of the n+ 1–th system can be written as:

F = (DUn)(D2Un)− Un(D3Un) (6.9)

with the rows prescribed by V replaced with boundary conditions. The solution at the
(n+ 1)–th iteration is then:

(i) Un+1 = A\F

(ii) Un+1 = BF
(6.10)

where (i) is the standard method and (ii) is the preconditioned method.
Note that the inverse operators are excluded from this example. As has been explained,

for linear operators representing differentiation the inverse operator matrix R is theoretically
equivalent to the preconditioning matrix B. The differences between the two are dealt with
in Chapter 4.

Figure 6.7 shows the results of using these two iterative methods in solving equation
(6.8). For early iterations, the two methods show identical results. However, the precondi-
tioned system is able to improve its solution by several orders of magnitude, while consec-
utive iterates of the standard method constantly change by around 1e − 10, as measured
by the 2-norm. The right side of the figure shows that the preconditioned system is more
robust to increasing values of N than the standard method.
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Figure 6.7: 2-norm of the change in solutions over 20 iterations for N = 64 (left) and
minimum change in solutions within 100 iterations for various N (right).

The condition number for the matrix A grows as roughly O(N9). As such, using the
standard method requires solving several ill-conditioned systems. This is circumvented in
the preconditioned case, as only matrix multiplication is used.

Suppose the example instead used a more general linear operator L in place of fourth
order differentiation. In this case, the preconditioning would require solving several systems,
though they would still be better conditioned than the standard method. The inverse oper-
ator matrix would no longer be the same as the preconditioning matrix. Using the inverse
operator matrix would require only matrix multiplication, and may prove more robust than
the preconditioning for such a problem.

6.5 PDE example

Consider the one dimensional diffusion equation:

ut = µuxx, u(x, 0) = g(x) (6.11)

with homogeneous Dirichlet boundary conditions. Using the backward Euler method, the
following time step may be used:

(I − µ∆tD2)Un+1 = Un (6.12)

where ∆t is the size of each time step and D2 are differentiation matrices of order 2 respec-
tively.
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Let A be the matrix I − µ∆tD2 with rows prescribed by the set V = {1,−1} replaced
with boundary conditions. Let G be the vector of the initial condition g(x) evaluated at the
Chebyshev points (1.1), with the elements prescribed by V replaced with zeros. This gives
the numerical solution at time tn = n∆t as Un = (A−1)nG.

If the PSIM is constructed for second order differentiation with Dirichlet boundary
conditions, the time step can instead be written as:

(B − µ∆tĨ)Un+1 = BUn (6.13)

noting that Ĩ is the identity matrix with the rows prescribed by V replaced with zeros so
as not to interfere with the boundary conditions. For inhomogeneous boundary conditions,
care must be taken as to the sign of the first and last element in Un.

Preconditioning with the PSIM is done to reduce the condition number of the matrix
A. It does so by removing the highest order differentiation matrix. Incidentally, this is the
largest source of round-off error in constructing the system. In this example, if µ∆t is small
the effects of the matrix are already mitigated by multiplication by a small number. In fact,
if B itself is poorly conditioned, for sufficiently small µ∆t, preconditioning may lead to an
even more poorly conditioned time step.

To construct the inverse operator matrix, the differential operator must be rewritten to
isolate the highest order differentiation matrix:

L =
(
d

dx

)2
− 1
µ∆t . (6.14)

The fundamental solution set is then
{

sinh
(

x√
µ∆t

)
, cosh

(
x√
µ∆t

)}
. The time step can

then be represented by:
Un+1 = (−R/µ∆t)Un. (6.15)

For small µ∆t, the fundamental solution set contains a function that grows exponentially
away from x = 0. This poses a threat of overflow and amplification of round-off error in
calculating the matrix R. Ideally, the inverse operator should only be employed for µ∆t on
the order of 1.

In Chapter 5 the exact eigenvalues of several problems were found. For this problem,
the eigenvalue problem for V = {−1, 1} becomes:

− au′′(x) + u(x) = λu(x), u(±1) = 0, (6.16)

where a = µ∆t. This ultimately leads to the eigenvalues λ = 1 + a(kπ/2)2 for k ∈ N. For
a > 0, all eigenvalues are greater than 1 and there are no stability issues arising from the
exact eigenvalues.
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Figure 6.8: Largest eigenvalue of the matrices A−1, (B−µ∆tI)−1B and R for various values
of µ∆t.

With exact eigenvalues for the forward problem always greater than 1, the eigenvalues
of R are expected to all be less than or equal to 1. Despite this, figure 6.8 shows that
the matrix R has eigenvalues greater than 1, and thus stability issues, for small µ∆t. The
matrix R cannot be used for µ∆t < 0.04. The standard method and preconditioning show
no instabilities due to eigenvalues.
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Chapter 7

Arbitrary collocation points

The methods described above can be used more generally to find solutions on points other
than the Chebyshev points. Given a set of points Y = {y0, y1, ..., yN} and a matrix equation
A~U = ~F on the Chebyshev points,define the following matrices element-wise:

Tij = cos
(
ijπ

N

)
, T −1

ij = 2
cicjN

Tij , Lij = Tj(yi) (7.1)

where ci are the weights from equation (1.3) and Tj(x) are the Chebyshev polynomials.
The operation T −1AT = AT moves the matrix A to the spectral space of the Chebyshev
polynomials. AT is a matrix of coefficients of Chebyshev polynomials associated with the
ODE operator A. The product LAT is therefore the evaluation of A at the points Y . It
remains to decompose the solution into coefficients of the Chebyshev polynomials evaluated
on V . This is achieved with the inverse of L, L−1. Thus the matrix equation on the set of
points Y is AY ~UY = ~FY where AY = LT −1AT L−1. The definition of ~UY and ~FY can be
found directly:

A~U = ~F =⇒ AT L−1LT −1~U = ~F =⇒ LT −1AT L−1LT −1~u = LT −1 ~F , (7.2)

and so ~UY = LT −1~U and ~FY = LT −1 ~F .
The transformation LT −1AT L−1 = AY is linear. Therefore, if BA = I, then BYAY = I.

Thus, the desired property of the preconditioning matrix is maintained on the new set of
points Y . However, if the matrix AY is constructed on the set Y , then BY will not satisfy
this property. Specifically, if D(k)

Y is the k–th order differentiation matrix on Y and ÃY is
the matrix constructed analogously to those in Chapter 1 then BY does not approximate
the inverse of ÃY . This is presented in the following lemma.

Lemma 4. Let D(k)
Y be the k–th order differentiation matrix on the points Y 6= X. Let ÃY

be the matrix constructed as in Chapter 1 for a linear operator with constant coefficients
using the matrices {D(k)

Y }mk=1. Let A be the analogous matrix on the Chebyshev points, and
R its inverse. Then RY = LT −1RT L−1 is not the inverse of ÃY .
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Proof. First consider D representing first order differentiation on the Chebyshev points. Let
DY be the analogous matrix on the points Y . Note that DY = LT −1DT L−1.

Let A result from replacing the n–th row of D with the boundary condition. Likewise,
let ÃY result from performing the same operation on DY . Let B be the inverse of the matrix
A. Then BY , the transformation of B, is the inverse of AY , the transformation of A. For
BY to be the inverse of ÃY requires ÃY = AY .

To show this is not true for a general set of points, consider Z = D − A and ZY the
transformation of Z. Note that ZY = DY −AY , and if ÃY = AY then the only non-zero row
of ZY is the n–th row, as this is the only row of ÃY that is not the same as DY . Moreover,
the only non-zero row of Z is the n–th row, as this is the only row of D that is not the same
as A.

Let ~z be the n–th row of Z. Let ~si be the i–th column of the matrix product T L−1

and tij the element in the i–th row and j–th column of LT −1. Then ZY can be written
element-wise as:

(ZY )ij = tin~z · ~sj . (7.3)

Since {~sj} spans the space RN+1, ~z · ~sj must be non-zero for at least one j. Thus for the
i–th row of ZY to be zero requires tin = 0.

Recall that Lij = Tj(yi) where Tj(x) is the j–th Chebyshev polynomial and yi a point
in the set Y . The rows of L can be decomposed into the rows of T since these rows span
RN+1:

Lij = Tj(yi) =
N∑
k=0

λikTj(xk). (7.4)

It can be shown with equation (2.6) that λik = tik. Note that T1(yi) = yi =
∑N
k=0 tikxk,

which implies:

Tj(yi) = Tj(T1(yi)) = Tj

(
N∑
k=0

tikxk

)
=

N∑
k=0

tikTj(xk) ∀ 0 ≤ j ≤ N. (7.5)

Using the recursive form of the Chebyshev polynomials gives the following equations:

Tj(yi) =2
N∑
k=0

tikyiTj−1(xk)−
N∑
k=0

tikTj−2(xk)

=
N∑
k=0

tikTj(xk) =2
N∑
k=0

tikxkTj−1(xk)−
N∑
k=0

tikTj−2(xk)

=⇒
N∑
k=0

tik(yi − xk)Tj−1(xk) = 0.

(7.6)
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Let ~wi be defined element-wise as wik = tik(yi − xk), then Tj ~wi = 0 for all j = 1, ..., N − 1.
Additionally, taking the sum of all wik gives:

N∑
k=0

tik(yi − xk) = vi

N∑
k=0

tik −
N∑
k=0

tikxk = yi

(
N∑
k=0

tik − 1
)

= 0 =⇒ T0 ~wi = 0. (7.7)

The only non-zero vector that satisfies this is the last column of T −1. Thus, ~wi has the
form:

~wi = bi



1/2
−1
1
−1
...

(−1)N/2


. (7.8)

Therefore, if tin = 0 then bi = 0 and tik(yi − xk) = 0 for all k. This implies yi = x` for
some `, and thus Y = X. As well, if Y 6= X, then yi 6= xk for at least one i and all k. This
implies bi 6= 0 and tin 6= 0.

It is straightforward to extend this to higher orders. For an m–th order problem, m rows
need to be removed and Z has m non-zero rows. Therefore, the i–th row of ZY will have
at least m non-zero entries unless tij = 0 for at least m choices of j. By above, this implies
tij = 0 for all but one j and yi = x` for some `.

This can also be extended to matrices A representing linear operators with constant
coefficients. Recall from Chapter 1 the definition of the matrix Ā:

Ā = D(m) +
m∑
n=1

QnD
(m−n). (7.9)

For linear operators with constant coefficients, Qn is a scalar. The transformation of this
matrix is then:

ĀY = D
(m)
Y +

m∑
n=1

QnD
(m−n)
Y . (7.10)

Taking Z = A− Ā allows the above proof to be used.

Note that if the transformation of Qn is diagonal with entries qn(yi) for all n, then the
proof would apply more generally. However, it cannot be shown that this is true for all
functions q(x), and so the transformation of Qn may well be full. It is then possible, though
unlikely, that the fullness of ZY in some way compensates for the fullness of the matrices
Qn,Y .

To construct the actual inverse of the matrix ÃY using the methods described above,
polynomials analogous to the Chebyshev polynomials Tk(x) for the set Y are required.
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Specifically, we need polynomials Lk(x) satisfying:

N∑
j=0

wjLk(yj)Ln(yj) = α(k,N)δk,n (7.11)

where wj are arbitrary weights. Additionally, the integrals of Lk(x) are needed.
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Chapter 8

Conclusion

As stated in Chapter 1, differentiation matrices suffer from large round-off error. This error
accumulates with higher orders of differentiation, and increases with N , the number of
collocation points. When these differentiation matrices are combined to form approximations
to linear operators, the system has a high condition number.

This thesis has presented two matrices that can be used to reduce the amount of round-
off error. First, the pseudospectral integration matrix (PSIM) can act as a preconditioner
to the system representing the linear operator. Second, the inverse operator matrix (IOM)
can act as an inverse to this system.

The spectra of both PSIM and IOM agree closely with expectations for a variety of
problems, as seen in Chapter 5. However, there are several instances where the spectra
diverged from expectations. In particular, for operators of the form L = d

dx

2 + a, IOM had
highly unusual eigenvalues for a < 0.

Applying PSIM to several example problems showed its usefulness and versatility in
improving accuracy and robustness. In particular, PSIM produced exceptional results in
solving equations (6.6) and (6.8). In the first of these, PSIM removed the round-off error
associated with the fifth order matrix, leaving only the effects of a first order matrix. In
the second, iterations were reduced to matrix-vector multiplications as opposed to system
solves.

IOM did not provide as much versitility, and only gave acceptable results when the
homogeneous solutions were known exactly. Moreover, its results were comparable to those
of PSIM, and there appears to be no advantage to using IOM over PSIM in terms of accuracy.
This may change if the relation between the choice of row removal and the accuracy of the
solution can be formalised.

Only the singular example (6.1) had an obvious choice of row removal, and then only
for IOM. No systematic method of row removal could be found that would always produce
best results. No two examples exhibited the same dependencies of accuracy on row removal,
and no correlation was found between the changing spectra and accuracy.
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While this thesis discusses the construction of PSIM and IOM in the context of Cheby-
shev collocation, the majority of the ideas presented translate readily to other methods.
For example, equivalent matrices in Legendre collocation require only changes in the inner
products, collocation points and basis polynomials. However, calculating either PSIM or
IOM on one set of collocation points and performing a resampling will not trivially provide
the relevant matrix on another.

59



Bibliography

[1] N.H. Abel. Précis d’une theorie des fonctions elliptiques. Journal für die reine und
angewandte Mathematik, 4:236–277, 1829.

[2] Uri M. Ascher, Robert M. M. Mattheij, and Robert D. Russell. Numerical Solution of
Boundary Value Problems for Ordinary Differential Equations. Society for Industrial
and Applied Mathematics: Philadelphia, 1995.

[3] Uri M Ascher, Steven J Ruuth, and Brian TR Wetton. Implicit-explicit methods for
time-dependent partial differential equations. SIAM Journal on Numerical Analysis,
32(3):797–823, 1995.

[4] R Baltensperger and J-P Berrut. The errors in calculating the pseudospectral differen-
tiation matrices for C̆ebys̆ev-Gauss-Lobatto points. Computers and Mathematics with
Applications, 37(1):41–48, 1999.

[5] Richard Baltensperger and Manfred R Trummer. Spectral differencing with a twist.
SIAM Journal on Scientific Computing, 24(5):1465–1487, 2003.

[6] George David Birkhoff. General mean value and remainder theorems with applications
to mechanical differentiation and quadrature. Transactions of the American Mathe-
matical Society, 7(1):107–136, 1906.

[7] William E. Boyce and Richard C. DiPrima. Elementary differential equations and
boundary value problems. 9th edition, 2010.

[8] John P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publications, Inc.: New
York, 2000.

[9] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the
lambert w function. Advances in Computational Mathematics, 5:329–359, 1996.

[10] David Gottlieb and Liviu Lustman. The spectrum of the chebyshev collocation operator
for the heat equation. SIAM Journal on Numerical Analysis, 20(5):909–921, October
1983.

[11] David Gottlieb and Steven A. Orszag. Numerical analysis of spectral methods : theory
and applications. Regional conference series in applied mathematics ; 26. Society for
Industrial and Applied Mathematics, 1977.

[12] Randall J Leveque. Finite difference methods for ordinary and partial differential equa-
tions: steady-state and time-dependent problems. Society for Industrial and Applied
Mathematics, 2007.

60



[13] John C Mason and David C Handscomb. Chebyshev Polynomials. CRC Press, 2002.

[14] Conor McCoid and Manfred R. Trummer. Preconditioning of spectral methods via
birkhoff interpolation. Numerical Algorithms, Dec 2017.

[15] Roger Peyret. Spectral Methods for Incompressible Viscous Flow. Springer, New York,
2002.

[16] Isaac J Schoenberg. On Hermite-Birkhoff interpolation. Journal of Mathematical Anal-
ysis and Applications, 16(3):538–543, 1966.

[17] L.N. Trefethen and M. Trummer. An instability phenomenon in spectral methods.
SIAM J. on Numerical Analysis, 24:1008–1023, 1987.

[18] Li-Lian Wang, Michael Daniel Samson, and Xiaodan Zhao. A well-conditioned collo-
cation method using a pseudospectral integration matrix. SIAM Journal on Scientific
Computing, 36(3):A907–A929, 2014.

[19] J. A. C. Weideman and L. N. Trefethen. The eigenvalues of second-order spectral differ-
entiation matrices. SIAM Journal on Numerical Analysis, 25(6):1279–1298, December
1988.

61



Appendix A

Code

function B = PSIM(N,n,v,U1,U2)
%Computes the Birkhoff pseudospectral integration matrix
% B = PSIM(N,n,v,U1,U2) is the nth order integration matrix for N+1
% Chebyshev points with rows indexed by v removed and boundary conditions
% perscribed by U1 (at x = 1) and U2 (at x = 2).
% The length of v is n.
%
% B = PSIM(N,n,[a,b,c,...],U1,U2) replaces the rows indexed
% by a, b, c, ... with the boundary conditions specified in U1 and U2.
% The rows are replaced in order, ie. if v = [a b c] and U1 has 2 rows,
% rows a and b will be replaced with boundary conditions at x = 1, while
% row c will be replaced with boundary conditions at x = -1.
%
% ex. For Dirichlet boundary conditions on both boundaries, U1 = U2 = [1 0].
% For Neumann boundary conditions, U = [0 1]. For mixed
% boundary conditions, such as au(1)+bu’(1)=0 and cu(-1)+du’(-1)=0,
% U1 = [a b] and U2 = [c d]. If only one side of the boundary is
% specified, one of U1 or U2 can be left empty.

%---Chebyshev polynomials and integrals---%
% Polynomials (eq. 1.5)
T = cos( (0:N+2)’*(0:N)*pi/N );

% Integrals (eq. 2.11 and 2.12)
dTm=zeros(N+3,N+1,n+1);
dTm(:,:,1)=T;
for m=1:n

dTm(1,:,m+1)=dTm(2,:,m);
dTm(2,:,m+1)=dTm(3,:,m)/4;
for k=3:N+3-m

dTm(k,:,m+1)=((dTm(k+1,:,m)/k) - (dTm(k-1,:,m)/(k-2)))/2;
end
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end
dTm = permute(dTm,[2,1,3]);

%---Beta Coefficients---%
% Chebyshev weights (eq. 1.3 with modification)
c=ones(1,N+1);
c(1)=2; c(end)=2;
c = N*(c’*c);

% Coefficients (eq. 2.9)
b = T(1:N+1,:) - T(1:N+1,v)*( T(N-n+2:N+1,v)\T(N-n+2:N+1,:) );
b=2*b./c;

%---Boundary conditions---%
% Matrix system (eq. 2.16, 2.17)
Cm1 = zeros(n,n);
Cm1(1,:) = ones(1,n);
for k = 2:n

Cm1(k,k:n) = ( ( (k:n) - 1).^2 - (k - 2).^2 ) / (2*k - 3);
Cm1(k,k:n) = Cm1(k,k:n).*Cm1(k-1,k:n);

end
Cm2 = Cm1.*(-1).^( bsxfun(@plus,0:n-1,(0:n-1)’) );

% Rhs (eq. 2.17)
dTm = permute(dTm,[3,2,1]);
P1 = dTm(n+1:-1:2,1:N+1,1);
P2 = dTm(n+1:-1:2,1:N+1,end);

% Free parameters (eq. 2.19, 2.23)
if isempty(U1)

R = inv( U2*Cm2 );
r = R*( U2*P2 );

elseif isempty(U2)
R = inv( U1*Cm1 );
r = R*( U1*P1 );

else
R = inv( [ U1*Cm1 ; U2*Cm2 ] );
r = R*[ U1*P1 ; U2*P2 ];

end

%---Construction of the PSIM---%
dTm = permute(dTm,[3,2,1]);
B = ( dTm(:,1:N+1,end) - dTm(:,1:n,1)*r ) * b ; % (eq. 2.13)
B(:,v) = dTm(:,1:n,1) * R; % (eq. 2.21, 2.22)

end
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function Inverse = IOM(P,U1,U2,v)
%Computes the inverse operator matrix
% R = IOM(P,U1,U2,v) is the inverse integration matrix for the linear
% operator with homogeneous solutions defined in P, with rows indexed by
% v removed and boundary conditions prescribed by U1 (at x = 1) and U2
% (at x = 2). The length of v defines the order of the linear operator.
%
% R = IOM(P,U1,U2,[a,b,c,...]) replaces the rows indexed by a, b, c, ...
% with the boundary conditions specified in U1 and U2. The rows are
% replaced in order, ie. if v = [a b c] and U1 has 2 rows, rows a and b
% will be replaced with boundary conditions at x = 1, while row c will be
% replaced with boundary conditions at x = -1.
%
% Let the length of v be n. If P is of size (N+1) by n by n, then the
% (j-1)th page of P gives the jth derivatives of the homogeneous
% derivatives. If P is of size (N+1) by n by 1, the derivatives can be
% calculated by multiplying by the Chebyshev differentiation matrices. In
% either case, each column of P is a homogenous solution to the linear
% operator of concern evaluated on the N+1 Chebyshev nodes.
%
% If P is (N+1) by (N+1) then it is assumed that P is the collocation
% matrix representing the linear operator. The homogeneous solutions are
% then approximated by the null space of P.

%---Homog. Solns & their derivatives---%
% Size of inputs P and v
[N,type1,type2] = size(P); % defines type of homog. solns
m = length(v); % defines order of linear operator

if type2==m % P provides derivatives
[T,dT,cmat] = formCheb(N-1);
Pm = P;

elseif type2==1 % P does not provide derivatives
[T,dT,cmat,D] = formCheb(N-1);

if type1==N % P represents the linear operator
I = eye(N);
P = P \ I(:,v);

end

Pm = zeros(N,m,m);
Pm(:,:,1) = P;
for l = 2:m

Pm(:,:,l) = D*Pm(:,:,l-1);
end

end
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% Particular homog. solns (eq. 3.20)
Coeffs = Wronskian(Pm,v);
if abs(det(Coeffs))<=eps

disp(’Error: choice of V does not support a fundamental set of solutions’)
Inverse = zeros(N,N);
return

end

for i = 1:m
Pm(:,:,i) = Pm(:,:,i)*Coeffs;

end

% Beta scalars (eq. 3.17)
W = Wronskian(Pm,1:N);

%---Interpolants---%
% G coefficient functions, homog. solns
B = zeros(N,N,m);
Inverse = zeros(N,N,m);
for k = 1:m

B(:,:,k) = T’ - T(v(k),:)’*T(:,N)’/T(v(k),N); % (eq. 3.13)
B(:,:,k) = cmat.*B(:,:,k);
B(:,:,k) = dT*B(:,:,k);
Inverse(:,:,k) = ( Pm(:,k,1)*W(k,:) ).*B(:,:,k); % (eq. 3.18)

end
Inverse = sum(Inverse,3);

%---Boundary conditions---% (eq. 3.19)
Pm = permute( Pm,[3,2,1] );
B = permute( B,[3,2,1] );

if isempty(U2)
Lhs = U1*Pm(:,:,1);
Rhs = Lhs*( W.*B(:,:,1) );

elseif isempty(U1)
Lhs = U2*Pm(:,:,end);
Rhs = Lhs*( W.*B(:,:,end) );

else
BCplus = U1*Pm(:,:,1);
BCminus = U2*Pm(:,:,end);
Lhs = [ BCplus ; BCminus ];
Rhs = [ BCplus*( W.*B(:,:,1) ) ; BCminus*( W.*B(:,:,end) ) ];

end

Pm = permute( Pm,[3,2,1] );
Inverse = Inverse - Pm(:,:,1)*( Lhs\Rhs );
Inverse(:,v) = Pm(:,:,1)*( Lhs\eye(m) );
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end

function W = Wronskian(Fm,x) % (eq. 3.23)
% Wronskian - calculates the factors W_k(x)/W(x) for the functions Fm
% Inputs: Fm --- N+1 by m by m matrix containing the functions and their
% derivatives
% x --- vector of indices at which to calculate the factors
M = length(x);
[~,m,~] = size(Fm);
Fm = permute(Fm,[3,2,1]);
W = zeros(m,M);

if m==1
W = 1./permute(Fm(:,:,x),[1,3,2]);

else
for j = 1:M

Num = det(Fm(:,:,x(j)));
for k = 1:m

ind = [ 1:k-1 k+1:m ];
W(k,j) = (-1)^(k+m)*det( Fm(1:m-1,ind,x(j)) ) / Num;

end
end

end

end

function [T,dT,cmat,D] = formCheb(N)
% formCheb - forms the Chebyshev polynomials and integrals as well as the
% differentiation matrix and the Chebyshev points

% Differentiation matrix (eq. 1.2)
if nargout==4

D = chebdifmat(N,1,1);
end

% Polynomials (eq. 1.5)
T = cos( (0:N)’*(0:N+2)*pi/N );

% Integrals (eq. 2.11)
dT = zeros(N+1,N+1);
dT(:,1)=T(:,2);
dT(:,2)=T(:,3)/4;
for k=3:N+1

dT(:,k)=(1/2)*((T(:,k+1)/k) - (T(:,k-1)/(k-2)));
end
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T = T(1:N+1,1:N+1);

% Weights (eq. 1.3 with modification)
c = ones(1,N+1);
c(1) = 2*c(1); c(end) = 2*c(end);
cmat = c’*c; cmat = (2/N)./cmat;

end
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function [DM,xc] = chebdifmat(N,M,nst);
% CHEBDIFMAT Compute Chebyshev spectral differentiation matrices
%
% Use "text book" formulas
% This Matlab function is based on the code in the Matlab Spectral
% Differentiation Suite by Weideman & Reddy 1998, albeit the
% computation differs, and the results are not the same numerically,
% whether the ’nst’ flag below is set, or not.
%
% nst=0: no correction
% nst=1: Negative sum trick NST (default)
%
% DM = chebmatb(N,M,nst) [Each DM(:,:,ell) is an N+1 by N+1 matrix], or
% [DM,xc] = chebmatnst(N,M,nst)
%
% N: Degree of approximation (N+1 points)
% M: Maximum order of differentiation (default=1)
% nst: optional argument, controlling "negative sum trick"
%
% D = chebdifmat(N) yields first order differentiation,
% with negative sum trick
%
% Baltensperger & Trummer, SISC 2003
%
if (nargin<3) nst=1; if (nargin<2) M=1; end; end;
k=[0:N]’; x=cos(pi*k/N); % Chebyshev points
L=logical(eye(N+1));
C = toeplitz((-1).^k); % C is the matrix with
C(1,:) = C(1,:)*2; C(N+1,:) = C(N+1,:)*2; % entries (-1)^(j+k)*c(k)/c(j)
C(:,1) = C(:,1)/2; C(:,N+1) = C(:,N+1)/2;
X=repmat(x,1,N+1); % Off-diagonal elements
E=X-X’; E(L)=ones(N+1,1);
Z=1./E; Z(L)=zeros(N+1,1); % Z has elements 1/(x(k)-x(j))
D=eye(N+1);
for ell=1:M,

D = ell*Z.*(C.*repmat(diag(D),1,N+1) - D);
for k=1:N+1,

ind=[1:k-1,k+1:N+1]; y=D(k,ind);
[yabs,ii]=sort(abs(D(k,ind)));
D(k,k) = -sum(y(ii)); % NST with sorting

end;
DM(:,:,ell)=D;

end;
if (nst==0),

dig = x(2:N)./(ones(N-1,1)-x(2:N).^2); corner=(2*N^2 + 1)/6;
dig = [corner -dig’/2 -corner]’; % Diagonal entries
D=DM(:,:,1); D(L)=dig; DM(:,:,1)=D; E=D;
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for ell=2:M,
dig=sum(E’.*D);
E=DM(:,:,ell); E(L)=dig; DM(:,:,ell)=E;

end;
end; %if
if nargout > 1, xc=x; end;
%END
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%% 5th order constant coefficient example
% u^(5)(x) + u^(4)(x) - u’(x) - u(x) = f(x), u = sin(x^2)

% Grid
m = 5;
N = 64;
[Dm,x] = chebdifmat(N,m,1);

% Identity
I = eye(N+1);

% Rhs function
f = @(x) (16*x.^4 + 160*x.^3 - 13).*sin(x.^2) +...
(32*x.^5 - 48*x.^2 - 122*x).*cos(x.^2);

% Exact solution
Uexact = sin(x.^2);

% Boundary conditions
BC = [ Uexact(1) ; 2*cos(1) ; 2*cos(1)-4*sin(1) ; Uexact(end) ; -2*cos(-1) ];
U1 = eye(3,5); U2 = eye(2,5);

% Fundamental solutions
p1 = @(x) sin(x);
p2 = @(x) cos(x);
p3 = @(x) exp(x);
p4 = @(x) exp(-x);
p5 = @(x) x.*exp(-x);

P = zeros(N+1,m,m);
P(:,:,1) = [ p1(x) p2(x) p3(x) p4(x) p5(x) ];
P(:,:,2) = [ p2(x) -p1(x) p3(x) -p4(x) p4(x)-p5(x) ];
P(:,:,3) = [ -p1(x) -p2(x) p3(x) p4(x) -2*p4(x)+p5(x) ];
P(:,:,4) = [ -p2(x) p1(x) p3(x) -p4(x) 3*p4(x)-p5(x) ];
P(:,:,5) = [ p1(x) p2(x) p3(x) p4(x) -4*p4(x)+p5(x) ];

% Row removal
vA = [1 2 N/2+1 N N+1];
vB = [1 2 N-1 N N+1];

% Linear operator
A = Dm(:,:,5) + Dm(:,:,4) - Dm(:,:,1) - I;
A(vA,:) = [ I(1,:) ; Dm(1,:,1) ; Dm(1,:,2) ; I(end,:) ; Dm(end,:,1) ];
FA = f(x); FA(vA) = BC;
UA = A \ FA;

% PSIM
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Atail = Dm(:,:,4) - Dm(:,:,1) - I; Atail(vB,:) = 0;
B = PSIM(N,m,vB,U1,U2);
FB = f(x); FB(vB) = BC;
UB = (I + B*Atail) \ B*FB;

% IOM
R = IOM(P,U1,U2,vA);
UR = R * FA;

% Presentation
plot(x,Uexact,x,UA,’k*’,x,UB,’bo’,x,UR,’rs’)
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