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Introduction

m High order differentiation matrices have round-off error

m Can we remove sources of round-off error?

Option 1: Preconditioning by integration

Multiply by integration matrix

Option 2: Inversion

Find inverse of linear operator matrix
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The collocation method

Chebyshev differentiation matrices [sec.1]
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The collocation method

The general m-th order problem [sec.1]

Lu(x) =u'™(x) + Z gn(x)ul™ M (x) = f(x)
Bru(1 Za ulm=n) 1)—30, k=1,.., ko

Bu(— 1)—Zak (m=n)(-1) = af, k=ky+1,..,m
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The collocation method

The collocation matrices [sec.1]

m qn(XO)
A =p(m) | Z Q.0 Q,=
n=1 qn(XN)
m
A=Y akD{m", k=1,... ko
n=1
m
Av=Y"akDi"", k=ko+1,..,m
n=1

D(()mfn) is the first row of D(m=n) D,(men) the last row and D(©)
the identity matrix
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Combining operator and boundary conditions

Combining A and A [sec.1]

A and A can be concatenated to form the full system:

F
Al = |a
LS
ay

However, this system may be overdetermined.
Instead, remove rows of A and replace them with the rows of A.
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Combining operator and boundary conditions

Combining A and A [sec.1]

Each row (and column) of A is associated with a Chebyshev node.
Choose m of these nodes, V = {v1,...,vn}.

Then the rows associated with these points will be replaced by
boundary conditions.

Define a new matrix A by its rows:

Al x5 ¢V
AAk Xj:VkEV

\j =
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Combining operator and boundary conditions

Combining A and A [sec.1]

Alternatively, define the matrices D():

sm _ [DI™ x ¢V
Ax Xj:VkGV

s _ D % v
0 xieV

Then the matrix A is constructed just like A:

n=1
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Preconditioning

Preconditioning [sec.2]

D™ is a large source of round-off error.
We would like to remove it by multiplying A by some matrix B:

BA =+ Z BQ,D(m=m
n=1

Usually, BD(M ~ [ is enough.
In our case, we hope to find D™ B = |.
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Preconditioning

Integration matrix [sec.2]

If the columns of B are representations of polynomials Bj(x), then:

smg _ [BM0a) xi#V
! BkBj(:l:].) Xj = Vg € %4
ii . V
— Bj(m)(xi) — 5./ Xj ¢
0 xeV

1 xi=vwevVv
Bibj(+1) = {O XJ # Vi
d
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The Chebyshev polynomials

The Chebyshev polynomials [sec.1]

1
057\ /
ol 07 To(x) =Ta(x)
aff| ) 05 Ti(x) =To(x)/4
B _05* SN 01 Th(x) :% (Tll:i(f) _ T/’;—_l(f)) )
Figure:

Tx(x) = cos (k arccos(x))
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The Chebyshev polynomials

The Chebyshev polynomials [sec.1]

Tk(x) satisfy a discrete orthogonality relation on the nodes:

N
1 fof
(T, Tj)e = Z ;’Tk(x,-)TJ-(x,-) = 5 Noj

, N
<N

0
< k
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Constructing the preconditioner

Decomposing Bj(x) [sec.2] (adapted from Wang et al.)

Bj(x) is a polynomial of at most degree N, then its m-th derivative
can be represented as

N
Bj(m)(X)ZZkaTk(X)v bkj=0 V k=N-m+1,.,N
k=0

<B}m), Tk>c = kaCkN/2

Let By = Bj(m)(vk)/c,, where v, = x, € V; these values are
unknown

2 2

o (m) _ N
bk,J = Ck_N<BJ , Tk>c = Ck_N (ZJ Tk(Xj) + ;ﬁnd Tk(Vn)> .
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Constructing the preconditioner

Solving for B [sec.2]

Since by j =0 for k=N —-m+1,..., N, we can make a system to
solve for By ;:

) TN_(XJ)

G

TN(Vl) e TN(Vm) ,BlJ

Tnem+i(vi) oo Tnemti(vim) | | Bmy Tn—m+1(X))
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Constructing the preconditioner

Boundary conditions [sec.2]

For xj ¢ V

N—m
Bj(x) = Z bij (9™ Th(x) — pi(x))
k=0
Bnpi(£1) =Bnd; ™ Ti(£1)

For x; € V, Bj(x) is a polynomial of degree at most m — 1
satisfying
1 x5=w

BiBj(+1) = {0 i
J
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Inversion matrices [sec.3]

n=1

We want R such that AR = /. If Rj(x) is the polynomial
represented by the j-th column of R, then:

6 x ¢V
0 xeV
0 xi#wvweV

LRi(xi) = {

BiR;(+1) {
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Methods

Standard:
AU = F

Preconditioning (generalized from Wang et al.):
(/ +)° BQ,,D(’"")) U=BF
n=1

Inverse operator (new):
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Singular example

Singular example: function of V [sec.6.1]
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Figure: xu”(x) — (x + 1)u/(x) + u(x) = x?, u(£l) =
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Singular example

Singular example: function of N [sec.6.1]
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Figure: xu”(x) — (x + 1)u/(x) + u(x) = x2, wu(£l) =1
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Constant coefficients

Constant coefficients: function of V [sec.6.2]
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Figure: u®(x) + u®(x) — v/(x) — u(x) = f(x)
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Constant coefficients

Examples
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Constant coefficients
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Nonconstant coefficients

Nonconstant coefficients: function of V [sec.6.3]
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Figure:
u®(x) +sin(10x) v/ (x) + xu(x) = f(x), wu(£l) =uv'(£1)=uv"(1)=0
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Nonconstant coefficients

Examples
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Nonconstant coefficients: function of N [sec.6.3]
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u®)(x) + sin(10x) v/ (x) + xu(x) = f(x),
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Nonlinear example

Nonlinear [sec.6.4]
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Conclusion

m Some sources of round-off error (largest order derivative) are
easy to remove

m Remaining derivatives prove challenging

m Inversion operators need homogeneous solutions, which may
not be available
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Future Works

m A priori row removal
m Alternative methods to calculate integration matrix
m Inversion for constant coefficients

m Preconditioning for perturbed/ boundary layer problems
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Variation of parameters [sec.3]

ZGkJ )Pi(x)
S G ()PP =0 1=0,...m—2

By x=2x
G (i) = { ! ’

0 Xi 7# Xj, Vk

0 I<m
LP(x)=0, PV (w)=
1 /I=m
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