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Introduction

High order differentiation matrices have round-off error

Can we remove sources of round-off error?

Option 1: Preconditioning by integration

Multiply by integration matrix

Option 2: Inversion

Find inverse of linear operator matrix
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The collocation method

Chebyshev differentiation matrices [sec.1]
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Fig: From pg. 53 of Spectral
Methods in MATLAB by L.N.
Trefethen

D(2) = D · D
D(k) = D · D(k−1) = Dk

xk = cos

(
kπ

N

)
∈ [−1, 1]
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The collocation method

The general m-th order problem [sec.1]

Lu(x) =u(m)(x) +
m∑

n=1

qn(x)u
(m−n)(x) = f (x)

Bku(1) =
m∑

n=1

aknu
(m−n)(1) = ak0 , k =1, ..., k0

Bku(−1) =
m∑

n=1

aknu
(m−n)(−1) = ak0 , k =k0 + 1, ...,m
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The collocation method

The collocation matrices [sec.1]

Ā =D(m) +
m∑

n=1

QnD
(m−n), Qn =

qn(x0) . . .

qn(xN)


Âk =

m∑
n=1

aknD
(m−n)
0 , k = 1, ..., k0

Âk =
m∑

n=1

aknD
(m−n)
N , k = k0 + 1, ...,m

D
(m−n)
0 is the first row of D(m−n), D

(m−n)
N the last row and D(0)

the identity matrix
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Combining operator and boundary conditions

Combining Ā and Â [sec.1]

Ā and Â can be concatenated to form the full system:

[
Ā

Â

]
U⃗ =


f⃗
a10
...
am0


However, this system may be overdetermined.
Instead, remove rows of Ā and replace them with the rows of Â.
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Combining operator and boundary conditions

Combining Ā and Â [sec.1]

Each row (and column) of Ā is associated with a Chebyshev node.
Choose m of these nodes, V = {v1, ..., vm}.
Then the rows associated with these points will be replaced by
boundary conditions.
Define a new matrix A by its rows:

Aj =

{
Āj xj /∈ V

Âk xj = vk ∈ V
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Combining operator and boundary conditions

Combining Ā and Â [sec.1]

Alternatively, define the matrices D̃(k):

D̃
(m)
j =

{
D

(m)
j xj /∈ V

Âk xj = vk ∈ V

D̃
(k)
j =

{
D

(k)
j xj /∈ V

0 xj ∈ V

Then the matrix A is constructed just like Ā:

A = D̃(m) +
m∑

n=1

QnD̃
(m−n)
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Preconditioning

Preconditioning [sec.2]

D̃(m) is a large source of round-off error.
We would like to remove it by multiplying A by some matrix B:

BA = I +
m∑

n=1

BQnD̃
(m−n)

Usually, BD̃(m) ≈ I is enough.
In our case, we hope to find D̃(m)B = I .
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Preconditioning

Integration matrix [sec.2]

If the columns of B are representations of polynomials Bj(x), then:

D̃
(m)
i B⃗j =

{
B

(m)
j (xi ) xi /∈ V

BkBj(±1) xi = vk ∈ V

=⇒ B
(m)
j (xi ) =

{
δij xj /∈ V

0 xj ∈ V

BkBj(±1) =

{
1 xj = vk ∈ V

0 xj ̸= vk
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The Chebyshev polynomials

The Chebyshev polynomials [sec.1]

Figure:
Tk(x) = cos (k arccos(x))

∂−1
x T0(x) =T1(x)

∂−1
x T1(x) =T2(x)/4

∂−1
x Tk(x) =

1

2

(
Tk+1(x)

k + 1
− Tk−1(x)

k − 1

)
.
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The Chebyshev polynomials

The Chebyshev polynomials [sec.1]

Tk(x) satisfy a discrete orthogonality relation on the nodes:

⟨Tk ,Tj⟩c =
N∑
i=0

1

ci
Tk(xi )Tj(xi ) =

cj
2
Nδjk

cj =

{
2 k = 0,N

1 1 ≤ k < N
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Constructing the preconditioner

Decomposing Bj(x) [sec.2] (adapted from Wang et al.)
Bj(x) is a polynomial of at most degree N, then its m-th derivative
can be represented as

B
(m)
j (x) =

N∑
k=0

bk,jTk(x), bk,j = 0 ∀ k = N −m + 1, ...,N

⟨B(m)
j ,Tk⟩c = bk,jckN/2

Let βk,j = B
(m)
j (vk)/cn where vk = xn ∈ V ; these values are

unknown

bk,j =
2

ckN
⟨B(m)

j ,Tk⟩c =
2

ckN

(
1

cj
Tk(xj) +

m∑
n=1

βn,jTk(vn)

)
.
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Constructing the preconditioner

Solving for βk ,j [sec.2]

Since bk,j = 0 for k = N −m + 1, ...,N, we can make a system to
solve for βk,j : TN(v1) . . . TN(vm)

...
. . .

...
TN−m+1(v1) . . . TN−m+1(vm)


β1,j...
βm,j

 = − 1

cj

 TN(xj)
...

TN−m+1(xj)


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Constructing the preconditioner

Boundary conditions [sec.2]

For xj /∈ V

Bj(x) =
N−m∑
k=0

bk,j
(
∂−m
x Tk(x)− pk(x)

)
Bnpk(±1) =Bn∂

−m
x Tk(±1)

For xj ∈ V , Bj(x) is a polynomial of degree at most m − 1
satisfying

BkBj(±1) =

{
1 xj = vk

0 xj ̸= vk
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Inversion matrices [sec.3]

A = D̃(m) +
m∑

n=1

QnD̃
(m−n)

We want R such that AR = I . If Rj(x) is the polynomial
represented by the j-th column of R, then:

LRj(xi ) =

{
δij xj /∈ V

0 xj ∈ V

BkRj(±1) =

{
0 xj ̸= vk ∈ V

1 xj = vk ∈ V
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Methods

Standard:
AU = F

Preconditioning (generalized from Wang et al.):(
I +

m∑
n=1

BQnD̃
(m−n)

)
U = BF

Inverse operator (new):
U = RF
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Singular example

Singular example: function of V [sec.6.1]

Figure: xu′′(x)− (x + 1)u′(x) + u(x) = x2, u(±1) = 1

Conor McCoid Simon Fraser University

Spectral Differentiation: Integration and Inversion



Introduction Integration Inversion Examples Conclusion

Singular example

Singular example: function of N [sec.6.1]

Figure: xu′′(x)− (x + 1)u′(x) + u(x) = x2, u(±1) = 1
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Constant coefficients

Constant coefficients: function of V [sec.6.2]

Figure: u(5)(x) + u(4)(x)− u′(x)− u(x) = f (x)
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Constant coefficients

Constant coefficients: function of N [sec.6.2]

Figure: u(5)(x) + u(4)(x)− u′(x)− u(x) = f (x)
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Nonconstant coefficients

Nonconstant coefficients: function of V [sec.6.3]

Figure:
u(5)(x) + sin(10x)u′(x) + xu(x) = f (x), u(±1) = u′(±1) = u′′(1) = 0
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Nonconstant coefficients

Nonconstant coefficients: function of N [sec.6.3]

Figure:
u(5)(x) + sin(10x)u′(x) + xu(x) = f (x), u(±1) = u′(±1) = u′′(1) = 0
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Nonlinear example

Nonlinear [sec.6.4]

Figure: u(4)(x) = u′(x)u′′(x)− u(x)u(3)(x),
u(±1) = u′(−1) = 0, u′(1) = 1
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Conclusion

Some sources of round-off error (largest order derivative) are
easy to remove

Remaining derivatives prove challenging

Inversion operators need homogeneous solutions, which may
not be available
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Future Works

A priori row removal

Alternative methods to calculate integration matrix

Inversion for constant coefficients

Preconditioning for perturbed/ boundary layer problems
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Variation of parameters [sec.3]

Rj(x) =
m∑

k=1

Gk,j(x)Pk(x)

m∑
k=1

G ′
k,j(x)P

(l)
k (x) = 0 l = 0, ...,m − 2

G ′
k,j(xi ) =

{
βk,j xi = xj

0 xi ̸= xj , vk

LPk(x) = 0, P
(l)
k (vk) =

{
0 l < m

1 l = m
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