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The continuous problem

Lu(x) = f (x)

L: Some linear operator acting on the function u(x)

u(x): Some real-valued function (with some regularity)
acting on a point x ∈ Ω ⊂ R

f (x): Some real-valued function (with possibly different
regularity than u(x)) acting on the same point x
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The discrete problem

LNuN = fN

LN : Some operator taking N pieces of information from
uN and returning N pieces of information in fN , ie.
LN : RN → RN

uN : Some set of N pieces of information, ie. uN ∈ RN

fN : Some set of N pieces of information, ie. fN ∈ RN
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By the description of the discrete problem LN is some matrix of
size N × N and uN and fN are both vectors of length N. The
solution vector uN is then uN = L−1

N fN .

We want our solution vector uN to correspond in some way to the
solution function of the continuous problem. That is, we want

lim
N→∞

uN ≡ u(x)

in some sense.
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The discrete space may be defined by a set of basis functions
(called trial functions), {ϕk(x)}Nk=1. Our approximation uN then
defines a linear combination of these functions:

uN ≡
N∑

k=1

akϕk(x).
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We want now that when we apply L to this linear combination,
we’ll retrieve an approximation to f (x):

N∑
k=1

akLϕk(x) ≈ f (x).

More specifically, we want that〈
N∑

k=1

akLϕk(x)− f (x), ψj(x)

〉
= 0 ∀j = 1, ...,N

for some inner product defined on the space of functions and for
some set of test functions ψj(x).
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This allows us to choose three things:

the inner product ⟨·, ·⟩,
the trial functions ϕk(x),

and the test functions ψj(x).

Different sets of these choices lead to different classes of methods.
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Finite Element Methods

ϕk(x) and ψj(x) have finite support (locally defined).

Spectral Methods

ϕk(x) and ψj(x) have infinite support (globally defined).
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Galerkin

The trial functions individually satisfy the boundary conditions.

Tau

⟨ϕk(x), ψj(x)⟩ =

{
1 k = j

0 k ̸= j

Collocation

⟨ϕk(x), ψj(x)⟩ = ϕk(xj)
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Galerkin uN contains the coefficients in the Galerkin basis.

Tau uN also contains coefficients, but for a more general
basis.

Collocation uN contains the values of the approximation at some
set of collocation points, uN(xj).
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We will focus on spectral collocation (global basis functions,
minimize residual point by point). That is,

LN


uN(x1)
uN(x2)

...
uN(xN)

 =


f (x1)
f (x2)
...

f (xN)


with LN being a matrix representing the linear operator.

We need to know LN to solve this system. For that, we need to
know the differentiation matrix, DN .
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DN must work perfectly for the trial functions, ϕk(x):

DN


ϕk(x1)
ϕk(x2)

...
ϕk(xN)

 =


ϕ′k(x1)
ϕ′k(x2)

...
ϕ′k(xN)


for all k = 1, ...,N.

DN is singular since DN

[
1 1 . . . 1

]⊤
= 0 (nilpotent, actually).

The matrix representing second order differentiation is the square

of DN . Likewise, D
(m)
N = Dm

N .
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The continuous operator

Lu(x) = u(m)(x) +
m∑

k=1

pk(x)u
(m−k)(x)

The discrete operator

LN = Dm
N +

m∑
k=1

PkD
m−k
N

where Pk is a N × N diagonal matrix with entries pk(xj).

Conor McCoid University of Geneva

Introduction to Spectral Collocation



LN is singular because DN and all of its powers are singular.
Boundary conditions are needed to make LN nonsingular. The
number of BCs matches the order of the problem, m.

BCs may be concatenated so the system is overdetermined or they
can be used to replace rows in LN .
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What should we choose for ϕk(x)?

ϕk(x) span a finite dimensional space

they should be orthogonal with respect to some inner product
(generally a weighted L2 inner product)

they can be used to approximate functions in the infinite
space arbitrarily well

Some candidates:

Sinusoids (Fourier series)

Polynomials (Weierstrass approximation theorem)
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Jacobi polynomials

P
(α,β)
n (x) =

Γ(α+ n + 1)

n!Γ(α+ β + n + 1)

n∑
m=0

(
n

m

)
Γ(α+ β + n +m + 1)

Γ(α+m + 1)

(
x − 1

2

)m

Orthogonal with respect to the weight (1− x)α(1 + x)β on [−1, 1]
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Ultraspherical polynomials

Special cases of the Jacobi polynomials with α = β

Legendre polynomials

α = β = 0

Chebyshev polynomials

α = β = 1/2
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Sturm-Liouville Theory

The Sturm-Liouville Problem (SLP):

LSLϕ(x) = −
(
p(x)ϕ′(x)

)′
+ q(x)ϕ(x) = λw(x)ϕ(x)

with p ∈ C 1(−1, 1), p > 0, q,w ≥ 0, q,w ∈ C [−1, 1].

If LSL is self-adjoint (⟨LSPu, v⟩ = ⟨u,LSPv⟩) then the SLP has a
countable number of eigenvalues (λ) and the eigenfunctions (ϕ(x))
form a complete set in L2(−1, 1) and

L2w (−1, 1) =
{
u ∈ L2(−1, 1)

∣∣∣∫ 1
−1 u

2wdx <∞
}
.
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Projection of u(x) ∈ L2w (−1, 1)

PNu(x) =
N∑

k=1

ûkϕk(x)

where ûk =
∫ 1
−1 ϕk(x)u(x)w(x)dx/λk

If p(±1) = 0 and u ∈ C∞(−1, 1) then |ûk | → 0 faster than any
polynomial power of 1/k (known as spectral convergence).
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Special cases of SLP: ultraspherical polynomials

p(x) = (1− x2)α+1

q(x) = c(1− x2)α

w(x) = (1− x2)α

For α = 0 the eigenfunctions are the Legendre polynomials. For
α = 1/2 the eigenfunctions are the Chebyshev polynomials.
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Legendre polynomials

Rodrigues’ formula

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n
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Chebyshev polynomials

Closed form

Tn(x) = cos (n arccos (x))
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Weighted Gaussian quadrature

∫ 1

−1
f (x)w(x)dx =

N∑
k=1

wk f (xk)

We use the points xk as our collocation points. The weight
function w(x) is used in the weighted inner product ⟨·, ·⟩w .
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Gauss-Jacobi: w(x) = (1− x)α(1 + x)β

Gauss-Legendre: w(x) = 1

Chebyshev-Gauss: w(x) =
√
1− x2

The corresponding polynomials are orthogonal both with respect to
⟨·, ·⟩w and the quadrature rule.
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A good choice

Chebyshev polynomials

Tn(x) = cos (n arccos (x))

Chebyshev-Gauss(-Lobatto) quadrature

∫ 1

−1
f (x)

√
1− x2dx =

N∑
k=0

wk f

(
cos

(
kπ

N

))
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So our trial functions are Tn(x), the Chebyshev functions and our
collocation points are xk = cos

(
kπ
N

)
, the Chebyshev points. The

differentiation matrix DN is then:
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u′′(x)− u(x) = cos(πx/2), u(±1) = 0,
u(x) = − cos(πx/2)/((π/2)2 + 1)

Conor McCoid University of Geneva

Introduction to Spectral Collocation



LNL
−1
N = I

Let Rj be the j–th column of L−1
N .

LRj(xi ) =

{
1 i = j

0 i ̸= j

Rj(x) =
m∑

k=1

Gk,j(x)Pk(x)

where LPk(x) = 0.
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Variation of parameters

m∑
k=1

G ′
k,j(x)P

(n)
k (x) = 0, n = 0, ...,m − 2

=⇒ LRj(x) =
m∑

k=1

G ′
k,j(x)P

(m−1)
k (x)
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=⇒ G ′
k,j(xi ) =

{
βk,j i = j

0 i ̸= j

=⇒
m∑

k=1

βk,jP
(n)
k (xj) =

{
1 n = m − 1

0 n = 0, ...,m − 2

=⇒

 P1(xj) . . . Pm(xj)
...

...

P
(m−1)
1 (xj) . . . P

(m−1)
m (xj)


β1,j...
βm,j

 =


0
...
0
1


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P
(n)
k (vk) =

{
1 n = m − 1

0 n = 0, ...,m − 2

Pk(x) =
m∑

n=1

γk,nP̂n(x)

=⇒

 P̂1(vk) . . . P̂m(vk)
...

...

P̂
(m−1)
1 (vk) . . . P̂

(m−1)
m (vk)


γk,1...
γk,m

 =


0
...
0
1


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Fundamental matrix and Wronskian

det


 f1(x) . . . fm(x)

...
...

f
(m−1)
1 (x) . . . f

(m−1)
m (x)


 = W ({fk}mk=1 ; x)

=⇒ γk,n = (−1)n+m

W

({
P̂i

}
i ̸=n

; vk

)
W

({
P̂i

}m

i=1
; vk

)
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 P1(x) . . . Pm(x)
...

...

P
(m−1)
1 (x) . . . P

(m−1)
m (x)



=

 P̂1(x) . . . P̂m(x)
...

...

P̂
(m−1)
1 (x) . . . P̂

(m−1)
m (x)


γ1,1 . . . γm,1

...
...

γ1,m . . . γm,m


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Constant coefficient linear operators

Lu(x) = u(m)(x) +
∑m

k=1 aku
(m−k)(x)

P̂k,j(x) =
x j

j!
eλkx

where λk is a root with multiplicity mk (
∑

mk = m) of the
polynomial with coefficients ak and j = 0, ...,mk − 1.
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u′′(x)− u(x) = cos(πx/2), u(±1) = 0,
u(x) = − cos(πx/2)/((π/2)2 + 1)
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