Introduction to Spectral Collocation

Conor McCoid

University of Geneva

April 8th, 2019

The continuous problem
$\mathcal{L} u(x)=f(x)$
\mathcal{L} : Some linear operator acting on the function $u(x)$
$u(x)$: Some real-valued function (with some regularity) acting on a point $x \in \Omega \subset \mathbb{R}$
$f(x)$: Some real-valued function (with possibly different regularity than $u(x)$) acting on the same point x

The discrete problem

$$
L_{N} u_{N}=f_{N}
$$

L_{N} : Some operator taking N pieces of information from u_{N} and returning N pieces of information in f_{N}, ie. $L_{N}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$
u_{N} : Some set of N pieces of information, ie. $u_{N} \in \mathbb{R}^{N}$ f_{N} : Some set of N pieces of information, ie. $f_{N} \in \mathbb{R}^{N}$

By the description of the discrete problem L_{N} is some matrix of size $N \times N$ and u_{N} and f_{N} are both vectors of length N. The solution vector u_{N} is then $u_{N}=L_{N}^{-1} f_{N}$.

We want our solution vector u_{N} to correspond in some way to the solution function of the continuous problem. That is, we want

$$
\lim _{N \rightarrow \infty} u_{N} \equiv u(x)
$$

in some sense.

The discrete space may be defined by a set of basis functions (called trial functions), $\left\{\phi_{k}(x)\right\}_{k=1}^{N}$. Our approximation u_{N} then defines a linear combination of these functions:

$$
u_{N} \equiv \sum_{k=1}^{N} a_{k} \phi_{k}(x)
$$

We want now that when we apply \mathcal{L} to this linear combination, we'll retrieve an approximation to $f(x)$:

$$
\sum_{k=1}^{N} a_{k} \mathcal{L} \phi_{k}(x) \approx f(x)
$$

More specifically, we want that

$$
\left\langle\sum_{k=1}^{N} a_{k} \mathcal{L} \phi_{k}(x)-f(x), \psi_{j}(x)\right\rangle=0 \forall j=1, \ldots, N
$$

for some inner product defined on the space of functions and for some set of test functions $\psi_{j}(x)$.

This allows us to choose three things:

- the inner product $\langle\cdot, \cdot\rangle$,
- the trial functions $\phi_{k}(x)$,

■ and the test functions $\psi_{j}(x)$.
Different sets of these choices lead to different classes of methods.

Finite Element Methods
$\phi_{k}(x)$ and $\psi_{j}(x)$ have finite support (locally defined).

Spectral Methods

$\phi_{k}(x)$ and $\psi_{j}(x)$ have infinite support (globally defined).

Galerkin

The trial functions individually satisfy the boundary conditions.

Tau

$\left\langle\phi_{k}(x), \psi_{j}(x)\right\rangle= \begin{cases}1 & k=j \\ 0 & k \neq j\end{cases}$
Collocation
$\left\langle\phi_{k}(x), \psi_{j}(x)\right\rangle=\phi_{k}\left(x_{j}\right)$

Galerkin u_{N} contains the coefficients in the Galerkin basis.
Tau u_{N} also contains coefficients, but for a more general basis.
Collocation u_{N} contains the values of the approximation at some set of collocation points, $u_{N}\left(x_{j}\right)$.

We will focus on spectral collocation (global basis functions, minimize residual point by point). That is,

$$
L_{N}\left[\begin{array}{c}
u_{N}\left(x_{1}\right) \\
u_{N}\left(x_{2}\right) \\
\vdots \\
u_{N}\left(x_{N}\right)
\end{array}\right]=\left[\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\vdots \\
f\left(x_{N}\right)
\end{array}\right]
$$

with L_{N} being a matrix representing the linear operator.
We need to know L_{N} to solve this system. For that, we need to know the differentiation matrix, D_{N}.
D_{N} must work perfectly for the trial functions, $\phi_{k}(x)$:

$$
D_{N}\left[\begin{array}{c}
\phi_{k}\left(x_{1}\right) \\
\phi_{k}\left(x_{2}\right) \\
\vdots \\
\phi_{k}\left(x_{N}\right)
\end{array}\right]=\left[\begin{array}{c}
\phi_{k}^{\prime}\left(x_{1}\right) \\
\phi_{k}^{\prime}\left(x_{2}\right) \\
\vdots \\
\phi_{k}^{\prime}\left(x_{N}\right)
\end{array}\right]
$$

for all $k=1, \ldots, N$.
D_{N} is singular since $D_{N}\left[\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right]^{\top}=0$ (nilpotent, actually).
The matrix representing second order differentiation is the square of D_{N}. Likewise, $D_{N}^{(m)}=D_{N}^{m}$.

The continuous operator

$$
\mathcal{L} u(x)=u^{(m)}(x)+\sum_{k=1}^{m} p_{k}(x) u^{(m-k)}(x)
$$

The discrete operator

$$
L_{N}=D_{N}^{m}+\sum_{k=1}^{m} P_{k} D_{N}^{m-k}
$$

where P_{k} is a $N \times N$ diagonal matrix with entries $p_{k}\left(x_{j}\right)$.
L_{N} is singular because D_{N} and all of its powers are singular. Boundary conditions are needed to make L_{N} nonsingular. The number of BCs matches the order of the problem, m.

BCs may be concatenated so the system is overdetermined or they can be used to replace rows in L_{N}.

What should we choose for $\phi_{k}(x)$?

- $\phi_{k}(x)$ span a finite dimensional space
- they should be orthogonal with respect to some inner product (generally a weighted L_{2} inner product)
- they can be used to approximate functions in the infinite space arbitrarily well
Some candidates:
- Sinusoids (Fourier series)
- Polynomials (Weierstrass approximation theorem)

Jacobi polynomials

$$
\begin{aligned}
& P_{n}^{(\alpha, \beta)}(x)= \\
& \frac{\Gamma(\alpha+n+1)}{n!\Gamma(\alpha+\beta+n+1)} \sum_{m=0}^{n}\binom{n}{m} \frac{\Gamma(\alpha+\beta+n+m+1)}{\Gamma(\alpha+m+1)}\left(\frac{x-1}{2}\right)^{m}
\end{aligned}
$$

Orthogonal with respect to the weight $(1-x)^{\alpha}(1+x)^{\beta}$ on $[-1,1]$

Ultraspherical polynomials

Special cases of the Jacobi polynomials with $\alpha=\beta$
Legendre polynomials
$\alpha=\beta=0$
Chebyshev polynomials

$$
\alpha=\beta=1 / 2
$$

Sturm-Liouville Theory

The Sturm-Liouville Problem (SLP):

$$
\mathcal{L}_{S L} \phi(x)=-\left(p(x) \phi^{\prime}(x)\right)^{\prime}+q(x) \phi(x)=\lambda w(x) \phi(x)
$$

with $p \in C^{1}(-1,1), p>0, q, w \geq 0, q, w \in C[-1,1]$.
If $\mathcal{L}_{S L}$ is self-adjoint $\left(\left\langle\mathcal{L}_{S P} u, v\right\rangle=\left\langle u, \mathcal{L}_{S P} v\right\rangle\right)$ then the SLP has a countable number of eigenvalues (λ) and the eigenfunctions $(\phi(x))$ form a complete set in $L^{2}(-1,1)$ and
$L_{w}^{2}(-1,1)=\left\{u \in L^{2}(-1,1) \mid \int_{-1}^{1} u^{2} w d x<\infty\right\}$.

Projection of $u(x) \in L_{w}^{2}(-1,1)$

$$
P_{N} u(x)=\sum_{k=1}^{N} \hat{u}_{k} \phi_{k}(x)
$$

where $\hat{u}_{k}=\int_{-1}^{1} \phi_{k}(x) u(x) w(x) d x / \lambda_{k}$

If $p(\pm 1)=0$ and $u \in C^{\infty}(-1,1)$ then $\left|\hat{u}_{k}\right| \rightarrow 0$ faster than any polynomial power of $1 / k$ (known as spectral convergence).

Special cases of SLP: ultraspherical polynomials

- $p(x)=\left(1-x^{2}\right)^{\alpha+1}$
- $q(x)=c\left(1-x^{2}\right)^{\alpha}$
- $w(x)=\left(1-x^{2}\right)^{\alpha}$

For $\alpha=0$ the eigenfunctions are the Legendre polynomials. For $\alpha=1 / 2$ the eigenfunctions are the Chebyshev polynomials.

Legendre polynomials

Rodrigues' formula

$$
P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}
$$

Chebyshev polynomials

Closed form

$$
T_{n}(x)=\cos (n \arccos (x))
$$

Weighted Gaussian quadrature

$$
\int_{-1}^{1} f(x) w(x) d x=\sum_{k=1}^{N} w_{k} f\left(x_{k}\right)
$$

We use the points x_{k} as our collocation points. The weight function $w(x)$ is used in the weighted inner product $\langle\cdot, \cdot\rangle_{w}$.

Gauss-Jacobi: $w(x)=(1-x)^{\alpha}(1+x)^{\beta}$
Gauss-Legendre: $w(x)=1$
Chebyshev-Gauss: $w(x)=\sqrt{1-x^{2}}$

The corresponding polynomials are orthogonal both with respect to $\langle\cdot, \cdot\rangle_{w}$ and the quadrature rule.

A good choice

Chebyshev polynomials

$$
T_{n}(x)=\cos (n \arccos (x))
$$

Chebyshev-Gauss(-Lobatto) quadrature

$$
\int_{-1}^{1} f(x) \sqrt{1-x^{2}} d x=\sum_{k=0}^{N} w_{k} f\left(\cos \left(\frac{k \pi}{N}\right)\right)
$$

So our trial functions are $T_{n}(x)$, the Chebyshev functions and our collocation points are $x_{k}=\cos \left(\frac{k \pi}{N}\right)$, the Chebyshev points. The differentiation matrix D_{N} is then:

$\frac{2 N^{2}+1}{6}$	$2 \frac{(-1)^{j}}{1-x_{j}}$	$\frac{1}{2}(-1)^{N}$
$-\frac{1}{2} \frac{(-1)^{i}}{1-x_{i}}$	$\frac{(-1)^{i+j}}{x_{i}-x_{j}}$	
	$\frac{(-1)^{i+j}}{x_{i}-x_{j}}$	$\frac{1}{2} \frac{(-1)^{N+i}}{1+x_{i}}$
$-\frac{1}{2}(-1)^{N}$	$-2 \frac{(-1)^{N+j}}{1+x_{j}}$	$-\frac{2 N^{2}+1}{6}$

$$
\begin{aligned}
& u^{\prime \prime}(x)-u(x)=\cos (\pi x / 2), u(\pm 1)=0, \\
& u(x)=-\cos (\pi x / 2) /\left((\pi / 2)^{2}+1\right)
\end{aligned}
$$

$L_{N} L_{N}^{-1}=I$

Let R_{j} be the j-th column of L_{N}^{-1}.

$$
\begin{gathered}
\mathcal{L} R_{j}\left(x_{i}\right)= \begin{cases}1 & i=j \\
0 & i \neq j\end{cases} \\
R_{j}(x)=\sum_{k=1}^{m} G_{k, j}(x) P_{k}(x)
\end{gathered}
$$

where $\mathcal{L} P_{k}(x)=0$.

Variation of parameters

$$
\sum_{k=1}^{m} G_{k, j}^{\prime}(x) P_{k}^{(n)}(x)=0, \quad n=0, \ldots, m-2
$$

$$
\Longrightarrow \mathcal{L} R_{j}(x)=\sum_{k=1}^{m} G_{k, j}^{\prime}(x) P_{k}^{(m-1)}(x)
$$

$$
\begin{gathered}
\Longrightarrow G_{k, j}^{\prime}\left(x_{i}\right)= \begin{cases}\beta_{k, j} & i=j \\
0 & i \neq j\end{cases} \\
\Longrightarrow \sum_{k=1}^{m} \beta_{k, j} P_{k}^{(n)}\left(x_{j}\right)= \begin{cases}1 & n=m-1 \\
0 & n=0, \ldots, m-2\end{cases} \\
\Longrightarrow\left[\begin{array}{ccc}
P_{1}\left(x_{j}\right) & \ldots & P_{m}\left(x_{j}\right) \\
\vdots & & \vdots \\
P_{1}^{(m-1)}\left(x_{j}\right) & \ldots & P_{m}^{(m-1)}\left(x_{j}\right)
\end{array}\right]\left[\begin{array}{c}
\beta_{1, j} \\
\vdots \\
\beta_{m, j}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
P_{k}^{(n)}\left(v_{k}\right)= \begin{cases}1 & n=m-1 \\
0 & n=0, \ldots, m-2\end{cases} \\
P_{k}(x)=\sum_{n=1}^{m} \gamma_{k, n} \hat{P}_{n}(x) \\
\Longrightarrow\left[\begin{array}{ccc}
\hat{P}_{1}\left(v_{k}\right) & \ldots & \hat{P}_{m}\left(v_{k}\right) \\
\vdots & & \vdots \\
\hat{P}_{1}^{(m-1)}\left(v_{k}\right) & \ldots & \hat{P}_{m}^{(m-1)}\left(v_{k}\right)
\end{array}\right]\left[\begin{array}{c}
\gamma_{k, 1} \\
\vdots \\
\gamma_{k, m}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

Fundamental matrix and Wronskian

$$
\begin{gathered}
\operatorname{det}\left(\left[\begin{array}{ccc}
f_{1}(x) & \ldots & f_{m}(x) \\
\vdots & & \vdots \\
f_{1}^{(m-1)}(x) & \ldots & f_{m}^{(m-1)}(x)
\end{array}\right]\right)=W\left(\left\{f_{k}\right\}_{k=1}^{m} ; x\right) \\
\Longrightarrow \gamma_{k, n}=(-1)^{n+m} \frac{W\left(\left\{\hat{P}_{i}\right\}_{i \neq n} ; v_{k}\right)}{W\left(\left\{\hat{P}_{i}\right\}_{i=1}^{m} ; v_{k}\right)}
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
P_{1}(x) & \ldots & P_{m}(x) \\
\vdots & & \vdots \\
P_{1}^{(m-1)}(x) & \ldots & P_{m}^{(m-1)}(x)
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
\hat{P}_{1}(x) & \ldots & \hat{P}_{m}(x) \\
\vdots & & \vdots \\
\hat{P}_{1}^{(m-1)}(x) & \ldots & \hat{P}_{m}^{(m-1)}(x)
\end{array}\right]\left[\begin{array}{ccc}
\gamma_{1,1} & \ldots & \gamma_{m, 1} \\
\vdots & & \vdots \\
\gamma_{1, m} & \ldots & \gamma_{m, m}
\end{array}\right]
\end{aligned}
$$

Constant coefficient linear operators
$\mathcal{L} u(x)=u^{(m)}(x)+\sum_{k=1}^{m} a_{k} u^{(m-k)}(x)$

$$
\hat{P}_{k, j}(x)=\frac{x^{j}}{j!} e^{\lambda_{k} x}
$$

where λ_{k} is a root with multiplicity $m_{k}\left(\sum m_{k}=m\right)$ of the polynomial with coefficients a_{k} and $j=0, \ldots, m_{k}-1$.

$$
\begin{aligned}
& u^{\prime \prime}(x)-u(x)=\cos (\pi x / 2), u(\pm 1)=0, \\
& u(x)=-\cos (\pi x / 2) /\left((\pi / 2)^{2}+1\right)
\end{aligned}
$$

