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Why multiple grids?
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Motivation

What can go wrong?

Figure: An obvious problem
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Motivation

What can go wrong?

Figure: Blue vertices in red triangle
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Motivation

What can go wrong?

Figure: Red vertices in blue triangle
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Motivation

What can go wrong?

Figure: Edge intersections
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Motivation

What can go wrong?

Figure: Final result - no intersection!
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Motivation

What to do about it?

We need consistency!

Parsimony: the principle of using the fewest resources to solve a problem.

If an algorithm is parsimonious it is self-consistent, meaning the result
represents a possible accurate outcome, even if it’s inaccurate for the given
problem.
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Algorithm

Change of coordinates

x ′

z ′

y ′
~v0

~v1
~v2

~v3

x

z

y

General dimension, Rn:[
~v1 . . . ~vn

] [
~x0 . . . ~xn

]
=
[
~u0 − ~v0 . . . ~un − ~v0

]
We call the reference simplex Y and the general one X
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Algorithm

Sectioning by (hyper)planes

Avoid degenerate cases: binary-valued sign function

sign(p) =

{
1 p ≥ 0,

0 p < 0,

We only calculate an intersection between two points if they have different
signs in a given direction

+ve

+ve

-ve

Conor McCoid Parsimony and Robustness 03.12.2022



Algorithm

Sectioning by (hyper)planes

Definition (Simplex)

A simplex in Rn is the intersection of n + 1 half-spaces bounded by n + 1
hyperplanes of codimension 1.

Those hyperplanes are:

Pi = {~x ∈ Rn | ~x · ~ei = 0}

In 2D, they are the lines x = 0, y = 0 and x + y = 1

In 3D, the planes x = 0, y = 0, z = 0 and x + y + z = 1
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Algorithm

Sectioning by (hyper)planes

Small trick: add the coordinate ~e0 such that

~x · ~e0 = 1−
n∑

i=1

~x · ~ei

Now the n + 1 coordinates are barycentric with respect to one of the
simplices
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Algorithm

Sectioning by (hyper)planes

Take a vertex (~xj) and check its sign (sign(~xj · ~ei )) for all hyperplanes; if
it’s positive for all of them then ~xj lies in the reference simplex Y :

χY (~xj) =
n∏

i=0

sign(~xj · ~ei )

Now we can relate the number of vertices inside Y with the number of
intersections
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Algorithm

Do-over on opening example

Let’s look at the original 2D example that failed

+

+

-
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Algorithm

Do-over on opening example

Repeat for the other hyperplanes

+

+

-
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Algorithm

Do-over on opening example

Repeat for the other hyperplanes

+

+

+
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Algorithm

Higher dimensional sectioning

In higher dimensions, the process repeats

-ve
-ve

-ve

+ve

+ve

-ve -ve

The embedded triangle is sectioned by other hyperplanes, with the
intersections taking on the role of vertices
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Algorithm

Intersections of edges

Returning to the 2D example:

What were to happen if there was an error in calculating the intersections?
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Algorithm

Intersections of edges

How do we prevent this from happening?
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Algorithm

Intersections of edges

Intersection along the line y = 0:

q
{0,1}
y =

x0y1 − x1y0

y1 − y0

Intersection along the line x = 0:

q
{0,1}
x =

x0y1 − x1y0

x0 − x1
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Algorithm

Intersections of edges

Intersection along the line y = 0:

q
{0,1}
y =

x0y1 − x1y0

y1 − y0

Intersection along the line x = 0:

q
{0,1}
x =

x0y1 − x1y0

x0 − x1

Same numerator!
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Algorithm

Intersections of edges
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Algorithm

Intersection of k-faces

Intersections for k-faces, after sectioning by k hyperplanes:

~qJΓ · ~ei0 =

∣∣∣∣∣∣∣
~xj0 · ~ei0 ~xj0 · ~ei1 . . . ~xj0 · ~eik

...
...

...
~xjk · ~ei0 ~xjk · ~ei1 . . . ~xjk · ~eik

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 ~xj0 · ~ei1 . . . ~xj0 · ~eik
...

...
...

1 ~xjk · ~ei1 . . . ~xjk · ~eik

∣∣∣∣∣∣∣
,

{
J = {j0, . . . , jk} ,
Γ = {i1, . . . , ik}
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Algorithm

Intersection of k-faces

Swap around the columns for the other intersections of this k-face:

~qJΓ1
· ~ei1 =

∣∣∣∣∣∣∣
~xj0 · ~ei1 ~xj0 · ~ei0 . . . ~xj0 · ~eik

...
...

...
~xjk · ~ei1 ~xjk · ~ei0 . . . ~xjk · ~eik

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 ~xj0 · ~ei0 . . . ~xj0 · ~eik
...

...
...

1 ~xjk · ~ei0 . . . ~xjk · ~eik

∣∣∣∣∣∣∣
,

{
J = {j0, . . . , jk} ,
Γ1 = {i0, i2, . . . , ik}

There’s k + 1 intersections (same k-face of X , different hyperplanes of Y )
that share this numerator
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Algorithm

Intersection of k-faces
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Algorithm

Intersection of k-faces
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Algorithm

Intersection of k-faces
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Algorithm

Intersection of k-faces
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Algorithm

Partial intersecting k-faces

What if there aren’t k + 1
intersections between the
k-face and the hyperplanes of
Y ? Y
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Algorithm

Partial intersecting k-faces

Then there’s at least one
hyperplane that does not
section the k-face, so all
intersections of the previous
generation all have the same
sign

Y
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Algorithm

Partial intersecting k-faces

This sign transfers to the
next generation

Y
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Algorithm

Y vertices in X

Vertices of Y that lie in X sit between intersections of (n − 1)-faces
(called facets in geometry)

Take any line of Y that passes through the vertex and see if the vertex lies
between two intersections
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Conclusions

Conclusions

Robustness is achieved through parsimony

By making sure all calculations agree, we ensure the result corresponds to
a possible intersection

Any inaccuracy will then come from the individual calculations, and not
the way in which the algorithm proceeds
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Conclusions

Future works

Can this be applied to convex polytopes in general? What about concave
polytopes? Disconnected polytopes?

What about curved shapes? Spheres, ie. hyperbolic geometries?

We can apply parsimony to any algorithm; what other algorithms could
benefit from similar approaches?
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