Robust algorithm for the intersection of simplices

Conor McCoid ${ }^{1}$, Martin J. Gander ${ }^{2}$
${ }^{1}$ Université Laval, ${ }^{2}$ Université de Genève

03.12.2022

Why multiple grids?

Why multiple grids?

Why multiple grids?

[^0]
What can go wrong?

Figure: An obvious problem

What can go wrong?

Figure: Blue vertices in red triangle

What can go wrong?

Figure: Red vertices in blue triangle

What can go wrong?

Figure: Edge intersections

What can go wrong?

Figure: Final result - no intersection!

What to do about it?

We need consistency!
Parsimony: the principle of using the fewest resources to solve a problem.

If an algorithm is parsimonious it is self-consistent, meaning the result represents a possible accurate outcome, even if it's inaccurate for the given problem.

Change of coordinates

General dimension, \mathbb{R}^{n} :

$$
\left[\begin{array}{lll}
\vec{v}_{1} & \ldots & \vec{v}_{n}
\end{array}\right]\left[\begin{array}{lll}
\vec{x}_{0} & \ldots & \vec{x}_{n}
\end{array}\right]=\left[\begin{array}{lll}
\vec{u}_{0}-\vec{v}_{0} & \ldots & \vec{u}_{n}-\vec{v}_{0}
\end{array}\right]
$$

We call the reference simplex Y and the general one X^{F}

Sectioning by (hyper)planes

Avoid degenerate cases: binary-valued sign function

$$
\operatorname{sign}(p)= \begin{cases}1 & p \geq 0 \\ 0 & p<0\end{cases}
$$

We only calculate an intersection between two points if they have different signs in a given direction

Sectioning by (hyper)planes

Definition (Simplex)

A simplex in \mathbb{R}^{n} is the intersection of $n+1$ half-spaces bounded by $n+1$ hyperplanes of codimension 1 .

Those hyperplanes are:

$$
P_{i}=\left\{\vec{x} \in \mathbb{R}^{n} \mid \vec{x} \cdot \vec{e}_{i}=0\right\}
$$

In 2D, they are the lines $x=0, y=0$ and $x+y=1$

In 3D, the planes $x=0, y=0, z=0$ and $x+y+z=1$

Sectioning by (hyper)planes

Small trick: add the coordinate \vec{e}_{0} such that

$$
\vec{x} \cdot \vec{e}_{0}=1-\sum_{i=1}^{n} \vec{x} \cdot \vec{e}_{i}
$$

Now the $n+1$ coordinates are barycentric with respect to one of the simplices

Sectioning by (hyper)planes

Take a vertex $\left(\vec{x}_{j}\right)$ and check its $\operatorname{sign}\left(\operatorname{sign}\left(\vec{x}_{j} \cdot \vec{e}_{i}\right)\right)$ for all hyperplanes; if it's positive for all of them then \vec{x}_{j} lies in the reference simplex Y :

$$
\chi_{Y}\left(\vec{x}_{j}\right)=\prod_{i=0}^{n} \operatorname{sign}\left(\vec{x}_{j} \cdot \vec{e}_{i}\right)
$$

Now we can relate the number of vertices inside Y with the number of intersections

Do-over on opening example

Let's look at the original 2D example that failed

Do-over on opening example

Repeat for the other hyperplanes

Do-over on opening example

Repeat for the other hyperplanes

Higher dimensional sectioning

In higher dimensions, the process repeats

The embedded triangle is sectioned by other hyperplanes, with the intersections taking on the role of vertices

Intersections of edges

Returning to the 2D example:

What were to happen if there was an error in calculating the intersections?

Intersections of edges

How do we prevent this from happening?

Intersections of edges

Intersection along the line $y=0$:

$$
q_{y}^{\{0,1\}}=\frac{x_{0} y_{1}-x_{1} y_{0}}{y_{1}-y_{0}}
$$

Intersection along the line $x=0$:

$$
q_{x}^{\{0,1\}}=\frac{x_{0} y_{1}-x_{1} y_{0}}{x_{0}-x_{1}}
$$

Intersections of edges

Intersection along the line $y=0$:

$$
q_{y}^{\{0,1\}}=\frac{x_{0} y_{1}-x_{1} y_{0}}{y_{1}-y_{0}}
$$

Intersection along the line $x=0$:

$$
q_{x}^{\{0,1\}}=\frac{x_{0} y_{1}-x_{1} y_{0}}{x_{0}-x_{1}}
$$

Same numerator!

Intersections of edges

Intersection of k-faces

Intersections for k-faces, after sectioning by k hyperplanes:

$$
\vec{q}_{\Gamma}^{J} \cdot \vec{e}_{i_{0}}=\frac{\left|\begin{array}{cccc}
\vec{x}_{j_{0}} \cdot \vec{e}_{i_{0}} & \vec{x}_{j_{0}} \cdot \vec{e}_{i_{1}} & \ldots & \vec{x}_{j_{0}} \cdot \vec{e}_{i_{k}} \\
\vdots & \vdots & & \vdots \\
\vec{x}_{j_{k}} \cdot \vec{e}_{i_{0}} & \vec{x}_{j_{k}} \cdot \vec{e}_{i_{1}} & \ldots & \vec{x}_{j_{k}} \cdot \vec{e}_{i_{k}}
\end{array}\right|}{\left|\begin{array}{cccc}
1 & \vec{x}_{j_{0}} \cdot \vec{e}_{i_{1}} & \ldots & \vec{x}_{j_{0}} \cdot \vec{e}_{i_{k}} \\
\vdots & \vdots & & \vdots \\
1 & \vec{x}_{j_{k}} \cdot \vec{e}_{i_{1}} & \ldots & \vec{x}_{j_{k}} \cdot \vec{e}_{i_{k}}
\end{array}\right|},\left\{\begin{array}{l}
J=\left\{j_{0}, \ldots, j_{k}\right\}, \\
\Gamma=\left\{i_{1}, \ldots, i_{k}\right\}
\end{array}\right.
$$

Intersection of k-faces

Swap around the columns for the other intersections of this k-face:

$$
\vec{q}_{\Gamma_{1}}^{J} \cdot \vec{e}_{i_{1}}=\frac{\left|\begin{array}{cccc}
\vec{x}_{j_{0}} \cdot \vec{e}_{i_{1}} & \vec{x}_{j_{0}} \cdot \vec{e}_{i_{0}} & \ldots & \vec{x}_{j_{0}} \cdot \vec{e}_{i_{k}} \\
\vdots & \vdots & & \vdots \\
\vec{x}_{j_{k}} \cdot \vec{e}_{i_{1}} & \vec{x}_{j_{k}} \cdot \vec{e}_{i_{0}} & \ldots & \vec{x}_{j_{k}} \cdot \vec{e}_{i_{k}}
\end{array}\right|}{\left|\begin{array}{cccc}
1 & \vec{x}_{j_{0}} \cdot \vec{e}_{i_{0}} & \ldots & \vec{x}_{j_{0}} \cdot \vec{e}_{i_{k}} \\
\vdots & \vdots & & \vdots \\
1 & \vec{x}_{j_{k}} \cdot \vec{e}_{i_{0}} & \ldots & \vec{x}_{j_{k}} \cdot \vec{e}_{i_{k}}
\end{array}\right|},\left\{\begin{array}{l}
J=\left\{j_{0}, \ldots, j_{k}\right\}, \\
\Gamma_{1}=\left\{i_{0}, i_{2}, \ldots, i_{k}\right\}
\end{array}\right.
$$

There's $k+1$ intersections (same k-face of X, different hyperplanes of Y) that share this numerator

Intersection of k-faces

Intersection of k-faces

Intersection of k-faces

Intersection of k-faces

Partial intersecting k-faces

What if there aren't $k+1$ intersections between the k-face and the hyperplanes of Y ?

Partial intersecting k-faces

Then there's at least one hyperplane that does not section the k-face, so all intersections of the previous generation all have the same sign

Partial intersecting k-faces

This sign transfers to the next generation

Y vertices in X

Vertices of Y that lie in X sit between intersections of $(n-1)$-faces (called facets in geometry)

Take any line of Y that passes through the vertex and see if the vertex lies between two intersections

Conclusions

Robustness is achieved through parsimony

By making sure all calculations agree, we ensure the result corresponds to a possible intersection

Any inaccuracy will then come from the individual calculations, and not the way in which the algorithm proceeds

Future works

Can this be applied to convex polytopes in general? What about concave polytopes? Disconnected polytopes?

What about curved shapes? Spheres, ie. hyperbolic geometries?

We can apply parsimony to any algorithm; what other algorithms could benefit from similar approaches?

[^0]: ${ }^{1}$ Sasongko2009

